38 research outputs found
DECIGO and DECIGO pathfinder
A space gravitational-wave antenna, DECIGO (DECI-hertz interferometer Gravitational wave Observatory), will provide fruitful insights into the universe, particularly on the formation mechanism of supermassive black holes, dark energy and the inflation of the universe. In the current pre-conceptual design, DECIGO will be comprising four interferometer units; each interferometer unit will be formed by three drag-free spacecraft with 1000 km separation. Since DECIGO will be an extremely challenging mission with high-precision formation flight with long baseline, it is important to increase the technical feasibility before its planned launch in 2027. Thus, we are planning to launch two milestone missions. DECIGO pathfinder (DPF) is the first milestone mission, and key components for DPF are being tested on ground and in orbit. In this paper, we review the conceptual design and current status of DECIGO and DPF
Guided Lock of a Suspended Optical Cavity Enhanced by a Higher Order Extrapolation
Lock acquisition of a suspended optical cavity can be a highly stochastic
process and is therefore nontrivial. Guided lock is a method to make lock
acquisition less stochastic by decelerating the motion of the cavity length
based on an extrapolation of the motion from an instantaneous velocity
measurement. We propose an improved scheme which is less susceptible to seismic
disturbances by incorporating the acceleration as a higher order correction in
the extrapolation. We implemented the new scheme in a 300-m suspended
Fabry-Perot cavity and improved the success rate of lock acquisition by a
factor of 30
Systematic calibration error requirements for gravitational-wave detectors via the Cramér-Rao bound
Gravitational-wave (GW) laser interferometers such as Advanced LIGO (The LIGO Scientific Collaboration 2015 Class. Quantum Grav. 32 074001) transduce spacetime strain into optical power fluctuation. Converting this optical power fluctuation back into an estimated spacetime strain requires a calibration process that accounts for both the interferometer's optomechanical response and the feedback control loop used to control the interferometer test masses. Systematic errors in the calibration parameters lead to systematic errors in the GW strain estimate, and hence to systematic errors in the astrophysical parameter estimates in a particular GW signal. In this work we examine this effect for a GW signal similar to GW150914, both for a low-power detector operation similar to the first and second Advanced LIGO observing runs and for a higher-power operation with detuned signal extraction. We set requirements on the accuracy of the calibration such that the astrophysical parameter estimation is limited by errors introduced by random detector noise, rather than calibration systematics. We also examine the impact of systematic calibration errors on the possible detection of a massive graviton
Residual amplitude modulation in interferometric gravitational wave detectors
The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity
Multi-color Cavity Metrology
Long baseline laser interferometers used for gravitational wave detection
have proven to be very complicated to control. In order to have sufficient
sensitivity to astrophysical gravitational waves, a set of multiple coupled
optical cavities comprising the interferometer must be brought into resonance
with the laser field. A set of multi-input, multi-output servos then lock these
cavities into place via feedback control. This procedure, known as lock
acquisition, has proven to be a vexing problem and has reduced greatly the
reliability and duty factor of the past generation of laser interferometers. In
this article, we describe a technique for bringing the interferometer from an
uncontrolled state into resonance by using harmonically related external fields
to provide a deterministic hierarchical control. This technique reduces the
effect of the external seismic disturbances by four orders of magnitude and
promises to greatly enhance the stability and reliability of the current
generation of gravitational wave detector. The possibility for using
multi-color techniques to overcome current quantum and thermal noise limits is
also discussed
Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs
Calibration of the Advanced LIGO detectors is the quantification of the
detectors' response to gravitational waves. Gravitational waves incident on the
detectors cause phase shifts in the interferometer laser light which are read
out as intensity fluctuations at the detector output. Understanding this
detector response to gravitational waves is crucial to producing accurate and
precise gravitational wave strain data. Estimates of binary black hole and
neutron star parameters and tests of general relativity require well-calibrated
data, as miscalibrations will lead to biased results. We describe the method of
producing calibration uncertainty estimates for both LIGO detectors in the
first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013
Systematic calibration error requirements for gravitational-wave detectors via the Cramér-Rao bound
Gravitational-wave (GW) laser interferometers such as Advanced LIGO (The LIGO Scientific Collaboration 2015 Class. Quantum Grav. 32 074001) transduce spacetime strain into optical power fluctuation. Converting this optical power fluctuation back into an estimated spacetime strain requires a calibration process that accounts for both the interferometer's optomechanical response and the feedback control loop used to control the interferometer test masses. Systematic errors in the calibration parameters lead to systematic errors in the GW strain estimate, and hence to systematic errors in the astrophysical parameter estimates in a particular GW signal. In this work we examine this effect for a GW signal similar to GW150914, both for a low-power detector operation similar to the first and second Advanced LIGO observing runs and for a higher-power operation with detuned signal extraction. We set requirements on the accuracy of the calibration such that the astrophysical parameter estimation is limited by errors introduced by random detector noise, rather than calibration systematics. We also examine the impact of systematic calibration errors on the possible detection of a massive graviton
Observation of Parametric Instability in Advanced LIGO
Parametric instabilities have long been studied as a potentially limiting
effect in high-power interferometric gravitational wave detectors. Until now,
however, these instabilities have never been observed in a kilometer-scale
interferometer. In this work we describe the first observation of parametric
instability in an Advanced LIGO detector, and the means by which it has been
removed as a barrier to progress