38 research outputs found

    DECIGO and DECIGO pathfinder

    Get PDF
    A space gravitational-wave antenna, DECIGO (DECI-hertz interferometer Gravitational wave Observatory), will provide fruitful insights into the universe, particularly on the formation mechanism of supermassive black holes, dark energy and the inflation of the universe. In the current pre-conceptual design, DECIGO will be comprising four interferometer units; each interferometer unit will be formed by three drag-free spacecraft with 1000 km separation. Since DECIGO will be an extremely challenging mission with high-precision formation flight with long baseline, it is important to increase the technical feasibility before its planned launch in 2027. Thus, we are planning to launch two milestone missions. DECIGO pathfinder (DPF) is the first milestone mission, and key components for DPF are being tested on ground and in orbit. In this paper, we review the conceptual design and current status of DECIGO and DPF

    Guided Lock of a Suspended Optical Cavity Enhanced by a Higher Order Extrapolation

    Get PDF
    Lock acquisition of a suspended optical cavity can be a highly stochastic process and is therefore nontrivial. Guided lock is a method to make lock acquisition less stochastic by decelerating the motion of the cavity length based on an extrapolation of the motion from an instantaneous velocity measurement. We propose an improved scheme which is less susceptible to seismic disturbances by incorporating the acceleration as a higher order correction in the extrapolation. We implemented the new scheme in a 300-m suspended Fabry-Perot cavity and improved the success rate of lock acquisition by a factor of 30

    Systematic calibration error requirements for gravitational-wave detectors via the Cramér-Rao bound

    Get PDF
    Gravitational-wave (GW) laser interferometers such as Advanced LIGO (The LIGO Scientific Collaboration 2015 Class. Quantum Grav. 32 074001) transduce spacetime strain into optical power fluctuation. Converting this optical power fluctuation back into an estimated spacetime strain requires a calibration process that accounts for both the interferometer's optomechanical response and the feedback control loop used to control the interferometer test masses. Systematic errors in the calibration parameters lead to systematic errors in the GW strain estimate, and hence to systematic errors in the astrophysical parameter estimates in a particular GW signal. In this work we examine this effect for a GW signal similar to GW150914, both for a low-power detector operation similar to the first and second Advanced LIGO observing runs and for a higher-power operation with detuned signal extraction. We set requirements on the accuracy of the calibration such that the astrophysical parameter estimation is limited by errors introduced by random detector noise, rather than calibration systematics. We also examine the impact of systematic calibration errors on the possible detection of a massive graviton

    Residual amplitude modulation in interferometric gravitational wave detectors

    Get PDF
    The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity

    Multi-color Cavity Metrology

    Get PDF
    Long baseline laser interferometers used for gravitational wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by four orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational wave detector. The possibility for using multi-color techniques to overcome current quantum and thermal noise limits is also discussed

    Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs

    Get PDF
    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013

    Systematic calibration error requirements for gravitational-wave detectors via the Cramér-Rao bound

    Get PDF
    Gravitational-wave (GW) laser interferometers such as Advanced LIGO (The LIGO Scientific Collaboration 2015 Class. Quantum Grav. 32 074001) transduce spacetime strain into optical power fluctuation. Converting this optical power fluctuation back into an estimated spacetime strain requires a calibration process that accounts for both the interferometer's optomechanical response and the feedback control loop used to control the interferometer test masses. Systematic errors in the calibration parameters lead to systematic errors in the GW strain estimate, and hence to systematic errors in the astrophysical parameter estimates in a particular GW signal. In this work we examine this effect for a GW signal similar to GW150914, both for a low-power detector operation similar to the first and second Advanced LIGO observing runs and for a higher-power operation with detuned signal extraction. We set requirements on the accuracy of the calibration such that the astrophysical parameter estimation is limited by errors introduced by random detector noise, rather than calibration systematics. We also examine the impact of systematic calibration errors on the possible detection of a massive graviton

    Observation of Parametric Instability in Advanced LIGO

    Get PDF
    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress
    corecore