62 research outputs found

    Time-dependent backgrounds of 2D string theory: Non-perturbative effects

    Full text link
    We study the non-perturbative corrections (NPC) to the partition function of a compactified 2D string theory in a time-dependent background generated by a tachyon source. The sine-Liouville deformation of the theory is a particular case of such a background. We calculate the leading as well as the subleading NPC using the dual description of the string theory as matrix quantum mechanics. As in the minimal string theories, the NPC are classified by the double points of a complex curve. We calculate them by two different methods: by solving Toda equation and by evaluating the quasiclassical fermion wave functions. We show that the result can be expressed in terms of correlation functions of the bosonic field associated with the tachyon source and identify the leading and the subleading corrections as the contributions from the one-point (disk) and two-point (annulus) correlation functions.Comment: 37 pages, 2 figure

    Complex Matrix Models and Statistics of Branched Coverings of 2D Surfaces

    Get PDF
    We present a complex matrix gauge model defined on an arbitrary two-dimensional orientable lattice. We rewrite the model's partition function in terms of a sum over representations of the group U(N). The model solves the general combinatorial problem of counting branched covers of orientable Riemann surfaces with any given, fixed branch point structure. We then define an appropriate continuum limit allowing the branch points to freely float over the surface. The simplest such limit reproduces two-dimensional chiral U(N) Yang-Mills theory and its string description due to Gross and Taylor.Comment: 21 pages, 2 figures, TeX, harvmac.tex, epsf.tex, TeX "big
    • …
    corecore