13,258 research outputs found
Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions
The flexural behaviour of a new generation composite sandwich beams made up of glass fibre-reinforced polymer skins and modified phenolic core material was investigated. The composite sandwich beams were subjected to 4-point static bending test to determine their strength and failure mechanisms in the flatwise and the edgewise positions. The results of the experimental investigation showed that the composite sandwich beams tested in the edgewise position failed at a higher load with less deflection compared to specimens tested in the flatwise position. Under flexural loading, the composite sandwich beams in the edgewise position failed due to progressive failure of the skin while failure in the flatwise position is in a brittle manner due to either shear failure of the core or compressive failure of the skin followed by debonding between the skin and the core. The results of the analytical predictions and numerical simulations are in good agreement with the experimental results
Algorithms to Compute the Lyndon Array
We first describe three algorithms for computing the Lyndon array that have
been suggested in the literature, but for which no structured exposition has
been given. Two of these algorithms execute in quadratic time in the worst
case, the third achieves linear time, but at the expense of prior computation
of both the suffix array and the inverse suffix array of x. We then go on to
describe two variants of a new algorithm that avoids prior computation of
global data structures and executes in worst-case n log n time. Experimental
evidence suggests that all but one of these five algorithms require only linear
execution time in practice, with the two new algorithms faster by a small
factor. We conjecture that there exists a fast and worst-case linear-time
algorithm to compute the Lyndon array that is also elementary (making no use of
global data structures such as the suffix array)
Cross-Layer Optimization of Fast Video Delivery in Cache-Enabled Relaying Networks
This paper investigates the cross-layer optimization of fast video delivery
and caching for minimization of the overall video delivery time in a two-hop
relaying network. The half-duplex relay nodes are equipped with both a cache
and a buffer which facilitate joint scheduling of fetching and delivery to
exploit the channel diversity for improving the overall delivery performance.
The fast delivery control is formulated as a two-stage functional non-convex
optimization problem. By exploiting the underlying convex and quasi-convex
structures, the problem can be solved exactly and efficiently by the developed
algorithm. Simulation results show that significant caching and buffering gains
can be achieved with the proposed framework, which translates into a reduction
of the overall video delivery time. Besides, a trade-off between caching and
buffering gains is unveiled.Comment: 7 pages, 4 figures; accepted for presentation at IEEE Globecom, San
Diego, CA, Dec. 201
Pressure-Induced Simultaneous Metal-Insulator and Structural-Phase Transitions in LiH: a Quasiparticle Study
A pressure-induced simultaneous metal-insulator transition (MIT) and
structural-phase transformation in lithium hydride with about 1% volume
collapse has been predicted by means of the local density approximation (LDA)
in conjunction with an all-electron GW approximation method. The LDA wrongly
predicts that the MIT occurs before the structural phase transition. As a
byproduct, it is shown that only the use of the generalized-gradient
approximation together with the zero-point vibration produces an equilibrium
lattice parameter, bulk modulus, and an equation of state that are in excellent
agreement with experimental results.Comment: 7 pages, 4 figures, submitted to Europhysics Letter
Collaboration Versus Cheating
We outline how we detected programming plagiarism in an introductory online
course for a master's of science in computer science program, how we achieved a
statistically significant reduction in programming plagiarism by combining a
clear explanation of university and class policy on academic honesty reinforced
with a short but formal assessment, and how we evaluated plagiarism rates
before SIGand after implementing our policy and assessment.Comment: 7 pages, 1 figure, 5 tables, SIGCSE 201
Stability Properties and Integrability of the Resolvent of Linear Volterra Equations
Integrability of the resolvent and the stability properties of the zero solution of linear Volterra integrodifferential systems are studied. In particular, it is shown that, the zero solution is uniformly stable if and only if the resolvent is integrable in some sense. It is also shown that, the zero solution is uniformly asymptotically stable if and only if the resolvent is integrable and an additional condition in terms of the resolvent and the kernel is satisfied. Finally, the integrability of the resolvent is obtained under an explicit condition
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA
We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N(2)) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with a free space Millimeter Wave Vector Network Analyzer (MVNA)
- …