1,448 research outputs found
Low temperature XPS of sensitive molecules: Titanium butoxide photoelectron spectra
XPS analysis of soft materials remains a challenging task, with sample degradation presenting itself across a wide range of different materials. Correct protocols when performing the experimental spectral acquisition will ensure minimal proliferation of errors in terms of scientific understanding during subsequent data treatments. Furthermore, XPS spectra of titanium butoxide will provide a valuable reference for the materials understanding of alkoxide based metal oxide and mixed-metal oxide functional systems
Effect of cell density on thrombin binding to a specific site on bovine vascular endothelial cells.
We studied thrombin binding to proliferating and confluent endothelial cells derived from bovine vascular endothelium. [125]thrombin was incubated with nonconfluent or confluent endothelial cells and both the total amount bound and the amount linked in a 77,000-dalton thrombin-cell complex were determined. Approximately 230,000 molecules of thrombin bound per cell in nonconfluent cultures compared to 12,800 molecules per cell in confluent cultures. Approximately 67,7000 thrombin molecules were bound in an apparently covalent complex, Mr = 77,000, with each cell in sparse cultures, whereas only 4,600 thrombin molecules per cell were bound in this complex with confluent cultures. Similar studies with [125I]thrombin and endothelial cells derived from bovine cornea revealed no difference either in the total amount of thrombin bound or in the amount bound in the 77,000-dalton complex using sparse or confluent cultures. When confluent vascular endothelial cultures were wounded, additional cellular binding sites for the 77,000-dalton complex with thrombin appeared within 24 h. A 237% increase in the amount of thrombin bound to these sites was induced by a wound which resulted in a 20% decrease in cell number in the monolayer. There was no significant increase in thrombin binding to other cellular sites at 24 h. These experiments provide evidence that the first change in thrombin binding after injury is an increase in the cellular sites involved in the 77,000-dalton complex, and suggest that thrombin binding to endothelial cells may be important in the vascular response to injury
A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia
Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse
Boosting the oxygen evolution activity in non-stoichiometric praseodymium ferrite-based perovskites by A site substitution for alkaline electrolyser anodes
Sustainable fossil fuel free systems are crucial for tackling climate change in the global energy market, and the identification and understanding of catalysts needed to build these systems plays a vital role in their development. ABO3−δ perovskite oxides have been observed to be potential replacement materials for the high-performing, but low ionic conducting and economically unfavourable Pt and IrO2 water splitting catalysts. In this work increased addition of Sr2+ aliovalent dopant ions into the crystal lattice of Pr1−xSrxFeO3−δ perovskites via A site substitution was seen to drastically improve the electrocatalytic activity of the oxygen evolution reaction (OER) in alkaline environments. The undoped PrFeO3−δ catalyst was not catalytically active up to 1.70 V against the reversible hydrogen electrode (RHE), whilst an onset potential of 1.62 V was observed for x = 0.5. Increased strontium content in Pr1−xSrxFeO3−δ was found to cause a reduction in the lattice parameters and crystal volume whilst retaining the orthorhombic Pbnm space group throughout all dopant levels, analysed using the Rietveld method. However, it was noted that the orthorhombic distortion was reduced as more Sr2+ replaced Pr3+. The mechanism for the increased electrocatalytic activity with increased strontium is due to the increasing concentration of oxygen vacancy (δ), leading to increased catalyst site availability, and the increased average oxidation state of Fe cations, consistent with the iodometric titration results. This results in shifting the average d shell eg electron filling further towards unity. X-ray photoelectron spectrum of the O 1s core level also shows the presence of lattice oxide and surface hydroxide/carbonate. This work shows promise in that using the more abundant and more economically friendly material of strontium allows for improved OER catalytic activity in otherwise inactive perovskite catalyst oxides
XPS surface analysis of ceria-based materials: Experimental methods and considerations
X-ray photoelectron spectroscopy (XPS) analysis of cerium is ubiquitous amongst the catalytic and materials literature however errors in experimental procedure and data analysis are often easily proliferated. In this work we focus on the best practice for experimental construction when approaching the task of understanding chemical environments in cerium-based materials by XPS
Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15
Invited for this month′s cover is the group of Karen Wilson and Adam Lee at RMIT University. The image shows platinum nanoparticles and Brønsted acid sites working cooperatively to catalyse the efficient hydrodeoxygenation of phenolic lignin residues to produce sustainable biofuels. The Full Paper itself is available at 10.1002/cssc.202000764
Isolated PdO sites on SiO2-supported NiO nanoparticles as active sites for allylic alcohol selective oxidation
Silica-supported NiO nanoparticles as hosts for isolated PdO catalytic sites. Isolate PdO is confirmed as the species responsible for the chemoselective oxidation of cinnamyl alcohol to cinnamaldehyde by operando X-ray absorption spectroscop
Advanced XPS characterization: XPS-based multi-technique analyses for comprehensive understanding of functional materials
X-ray photoelectron spectroscopy (XPS) has achieved maturity as an analytical technique in that it is a ubiquitous tool in the materials community, however as made apparent by recent reviews highlighting it's misuse as a means of chemical deduction, it is a practice which is greatly misunderstood even in its simplest form. Advanced XPS techniques, or a combination of XPS and a complementary surficial probe may elicit auxiliary information outside of the scope of the standard sphere of appreciation. This review aims to bring to the attention of the general materials audience a landscape of some atypical applications of lab-based XPS and combinatorial approaches of related surface analysis, such as ion scattering, ultraviolet photoelectron, electron energy loss and auger emission spectroscopies found on many lab-based instrument set-ups
Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr6–Cu–RGO nanocomposite for photocatalytic CO2 reduction
Pb-based halide perovskites have recently showed great potential in various applications such as solar cells, optoelectronics and photocatalysis. Despite their high performance, the Pb2+ toxicity along with poor stability hinders long term applications in photocatalysis. Herein, we report mechanochemically prepared Pb-free Cs2AgBiBr6 double perovskite nanoplates and their heterostructure with Cu-loaded reduced graphene oxide (Cu–RGO) for gas-phase photocatalytic CO2 reduction using water vapor as the proton source in the absence of a hole scavenger. The resulting Cs2AgBiBr6–Cu–RGO nanocomposite shows significant photocatalytic activity of 10.7 (±0.6) μmol CH4 g−1 h−1, 1.9 (±0.3) μmol CO g−1 h−1 and 1.0 (±0.2) μmol H2 g−1 h−1, with a CH4 selectivity of 93.0 (±0.5)% on an electron basis with 1 sun and a remarkable apparent quantum efficiency of 0.89 (±0.21)% at 590 nm. A further 32% enhancement in photocatalytic activity on an electron basis is achieved when the light intensity is doubled (2 suns). The high performance was attributed to their improved charge separation and suppressed electron–hole recombination, along with extended visible light absorption, better stability in a humid environment and improved CO2 adsorption. These findings support Cs2AgBiBr6 as a potential Pb-free alternative to conventional halide perovskites for photocatalytic solar-to-fuel conversion and CO2 utilization
Differential release of heterogeneous human mesenchymal stem cell populations from haemarthrotic traumatic knee injury.
- …