93 research outputs found
Path counting and random matrix theory
We establish three identities involving Dyck paths and alternating Motzkin
paths, whose proofs are based on variants of the same bijection. We interpret
these identities in terms of closed random walks on the halfline. We explain
how these identities arise from combinatorial interpretations of certain
properties of the -Hermite and -Laguerre ensembles of random
matrix theory. We conclude by presenting two other identities obtained in the
same way, for which finding combinatorial proofs is an open problem.Comment: 14 pages, 13 figures and diagrams; submitted to the Electronic
Journal of Combinatoric
Minimizing Communication for Eigenproblems and the Singular Value Decomposition
Algorithms have two costs: arithmetic and communication. The latter
represents the cost of moving data, either between levels of a memory
hierarchy, or between processors over a network. Communication often dominates
arithmetic and represents a rapidly increasing proportion of the total cost, so
we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds
were presented on the amount of communication required for essentially all
-like algorithms for linear algebra, including eigenvalue problems and
the SVD. Conventional algorithms, including those currently implemented in
(Sca)LAPACK, perform asymptotically more communication than these lower bounds
require. In this paper we present parallel and sequential eigenvalue algorithms
(for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms
that do attain these lower bounds, and analyze their convergence and
communication costs.Comment: 43 pages, 11 figure
Toward accurate polynomial evaluation in rounded arithmetic
Given a multivariate real (or complex) polynomial and a domain ,
we would like to decide whether an algorithm exists to evaluate
accurately for all using rounded real (or complex) arithmetic.
Here ``accurately'' means with relative error less than 1, i.e., with some
correct leading digits. The answer depends on the model of rounded arithmetic:
We assume that for any arithmetic operator , for example or , its computed value is , where is bounded by some constant where , but
is otherwise arbitrary. This model is the traditional one used to
analyze the accuracy of floating point algorithms.Our ultimate goal is to
establish a decision procedure that, for any and , either exhibits
an accurate algorithm or proves that none exists. In contrast to the case where
numbers are stored and manipulated as finite bit strings (e.g., as floating
point numbers or rational numbers) we show that some polynomials are
impossible to evaluate accurately. The existence of an accurate algorithm will
depend not just on and , but on which arithmetic operators and
which constants are are available and whether branching is permitted. Toward
this goal, we present necessary conditions on for it to be accurately
evaluable on open real or complex domains . We also give sufficient
conditions, and describe progress toward a complete decision procedure. We do
present a complete decision procedure for homogeneous polynomials with
integer coefficients, {\cal D} = \C^n, and using only the arithmetic
operations , and .Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of
Computational Mathematics: Santander 2005, Cambridge University Press, March
200
- …