40 research outputs found
Recommended from our members
The role of the ventral intraparietal area (VIP/pVIP) in parsing optic flow into visual motion caused by self-motion and visual motion produced by object-motion
Retinal image motion is a composite signal that contains information about two behaviourally significant factors: self-motion and the movement of environmental objects. It is thought that the brain separates the two relevant signals, and although multiple brain regions have been identified that respond selectively to the composite optic flow signal, which brain region(s) perform the parsing process remains unknown. Here, we present original evidence that the putative human ventral intraparietal area (pVIP), a region known to receive optic flow signals as well as independent self-motion signals from other sensory modalities, plays a critical role in the parsing process and acts to isolate object-motion. We localised pVIP using its multisensory response profile, and then tested its relative responses to simulated object-motion and self-motion stimuli; results indicated that responses were much stronger in pVIP to stimuli that specified object-motion. We report two further observations that will be significant for the future direction of research in this area; firstly, activation in pVIP was suppressed by distant stationary objects compared to the absence of objects or closer objects. Secondly, we describe several other brain regions that share with pVIP selectivity for visual object-motion over visual self-motion as well as a multisensory response
Recommended from our members
Weighing brain activity with the balance: a contemporary replication of Angelo Mossoâs historical experiment
Recommended from our members
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream.
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High Îł frequency activity (65-115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high Îł power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream
Recommended from our members
On to the real world : gender and self-efficacy in Excel
Although there have been a number of studies of
end-user software development tasks, few of them have
considered gender issues for real end-user developers
in real-world environments for end-user programming.
In order to be trusted, the results of such laboratory
studies must always be re-evaluated with fewer controls,
more closely reflecting real-world conditions.
Therefore, the research question in this paper is
whether the results of a Gender HCI controlled study
generalize -- to real-world end-user developers, in a
real-world spreadsheet environment, using a realworld
spreadsheet. Our findings are that the concepts
revealed by the original laboratory study appear to be
quite robust, being demonstrated in multiple ways in
this real-world environment
Recommended from our members
An i2b2-based, generalizable, open source, self-scaling chronic disease registry
Objective: Registries are a well-established mechanism for obtaining high quality, disease-specific data, but are often highly project-specific in their design, implementation, and policies for data use. In contrast to the conventional model of centralized data contribution, warehousing, and control, we design a self-scaling registry technology for collaborative data sharing, based upon the widely adopted Integrating Biology & the Bedside (i2b2) data warehousing framework and the Shared Health Research Information Network (SHRINE) peer-to-peer networking software. Materials and methods Focusing our design around creation of a scalable solution for collaboration within multi-site disease registries, we leverage the i2b2 and SHRINE open source software to create a modular, ontology-based, federated infrastructure that provides research investigators full ownership and access to their contributed data while supporting permissioned yet robust data sharing. We accomplish these objectives via web services supporting peer-group overlays, group-aware data aggregation, and administrative functions. Results: The 56-site Childhood Arthritis & Rheumatology Research Alliance (CARRA) Registry and 3-site Harvard Inflammatory Bowel Diseases Longitudinal Data Repository now utilize i2b2 self-scaling registry technology (i2b2-SSR). This platform, extensible to federation of multiple projects within and between research networks, encompasses >6000 subjects at sites throughout the USA. Discussion We utilize the i2b2-SSR platform to minimize technical barriers to collaboration while enabling fine-grained control over data sharing. Conclusions: The implementation of i2b2-SSR for the multi-site, multi-stakeholder CARRA Registry has established a digital infrastructure for community-driven research data sharing in pediatric rheumatology in the USA. We envision i2b2-SSR as a scalable, reusable solution facilitating interdisciplinary research across diseases
Recommended from our members
Explaining debugging strategies to end-user programmers
There has been little research into how end-user programming environments can provide explanations that could fill a critical information gap for end-user debuggers - help with debugging strategy. To address this need, we designed and prototyped a video-based approach for explaining debugging strategy, and accompanied it with a text-only approach. We then conducted a qualitative empirical study with end-user debuggers. The results reveal the influences of the explanations on end-user debuggers' decision making, how users reacted to the video versus textual media, and the information gaps the explanations closed. The results also reveal issues of particular importance to explanations of this type
Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF-ÎČ1 and IL-6
BACKGROUND: AIDS-related non-Hodgkin's lymphoma (AIDS-NHL) is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS) in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta). The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6) may represent a counteracting positive influence in their growth regulation. METHODS: Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. RESULTS: Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines differed in their responsiveness to TGF-beta1 and IL-6. Analysis of a recently derived AIDS-NHL cell line, UMCL01-101, indicated that it represents immunoblastic AIDS-DLCBL. Like LCL-8664, UMCL01-101 was sensitive to TGF-beta1-mediated inhibition, rescued partially by IL-6, and demonstrated rapid STAT3 activation following IL-6 treatment even in the presence of TGF-beta1. CONCLUSION: These studies indicate that the sensitivity of immunoblastic AIDS- or SAIDS-DLBCL to TGF-beta1-mediated growth inhibition may be overcome through the stimulation of proliferative and anti-apoptotic signals by IL-6, particularly through the rapid activation of STAT3
Within- and between-person and group variance in behavior and beliefs in cross-cultural longitudinal data
This study grapples with what it means to be part of a cultural group, from a statistical modeling perspective. The method we present compares within- and between-cultural group variability, in behaviors in families. We demonstrate the method using a cross-cultural study of adolescent development and parenting, involving three biennial waves of longitudinal data from 1296 eight-year-olds and their parents (multiple cultures in nine countries). Family members completed surveys about parental negativity and positivity, child academic and social-emotional adjustment, and attitudes about parenting and adolescent behavior. Variance estimates were computed at the cultural group, person, and within-person level using multilevel models. Of the longitudinally consistent variance, most was within and not between cultural groupsâalthough there was a wide range of between-group differences. This approach to quantifying cultural group variability may prove valuable when applied to quantitative studies of acculturation
Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen
Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically âswitched onâ or âoffâ only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC