8,559 research outputs found
Flavour changing strong interaction effects on top quark physics at the LHC
We perform a model independent analysis of the flavour changing strong
interaction vertices relevant to the LHC. In particular, the contribution of
dimension six operators to single top production in various production
processes is discussed, together with possible hints for identifying signals
and setting bounds on physics beyond the standard model.Comment: Authors corrections (references added
Are There Hints of Light Stops in Recent Higgs Search Results?
The recent discovery at the LHC by the CMS and ATLAS collaborations of the
Higgs boson presents, at long last, direct probes of the mechanism for
electroweak symmetry breaking. While it is clear from the observations that the
new particle plays some role in this process, it is not yet apparent whether
the couplings and widths of the observed particle match those predicted by the
Standard Model. In this paper, we perform a global fit of the Higgs results
from the LHC and Tevatron. While these results could be subject to
as-yet-unknown systematics, we find that the data are significantly better fit
by a Higgs with a suppressed width to gluon-gluon and an enhanced width to
gamma gamma, relative to the predictions of the Standard Model. After
considering a variety of new physics scenarios which could potenially modify
these widths, we find that the most promising possibility is the addition of a
new colored, charged particle, with a large coupling to the Higgs. Of
particular interest is a light, and highly mixed, stop, which we show can
provide the required alterations to the combination of gg and gamma gamma
widths.Comment: 6 pages, 5 figure
Supersymmetric QCD flavor changing top quark decay
We present a detailed and complete calculation of the gluino and scalar
quarks contribution to the flavour-changing top quark decay into a charm quark
and a photon, gluon, or a Z boson within the minimal supersymmetric standard
model including flavour changing gluino-quarks-scalar quarks couplings in the
right-handed sector. We compare the results with the ones presented in an
earlier paper where we considered flavour changing couplings only in the
left-handed sector. We show that these new couplings have important
consequences leading to a large enhancement when the mixing of the scalar
partners of the left- and right-handed top quark is included. Furthermore CP
violation in the flavour changing top quark decay will occur when a SUSY phase
is taken into account.Comment: 14 pages, latex, 3 figure
Anomalous t-c-g coupling: The connection between single top production and top decay
Continuing earlier work, we examine the constraint on an anomalous t-c-g
coupling from top quark decay. We find that from current CDF measurements of
the branching ratio , the minimum scale at which new physics
can strongly modify the t-c-g coupling is \Ltcg about 950 GeV. At the
upgraded Tevatron, single top production can constrain \Ltcg 4.5 TeV.
The connection between t-c production and the decay is
examined, showing how constraints on one lead to a constraint on the other.Comment: 5 pages. Requires epsf.sty to process .eps formatted figure
Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube
We have studied the afterpulse of a hemispherical photomultiplier tube for an
upcoming reactor neutrino experiment. The timing, the amplitude, and the rate
of the afterpulse for a 10 inch photomultiplier tube were measured with a 400
MHz FADC up to 16 \ms time window after the initial signal generated by an LED
light pulse. The time and amplitude correlation of the afterpulse shows several
distinctive groups. We describe the dependencies of the afterpulse on the
applied high voltage and the amplitude of the main light pulse. The present
data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
Single Top Quark Production via FCNC Couplings at Hadron Colliders
We calculate single top-quark production at hadron colliders via the
chromo-magnetic flavor-changing neutral current couplings and . We find that the strength for the anomalous ()
coupling may be probed to () at the Tevatron with of data and
() at the LHC with of data. The two couplings may be
distinguished by a comparision of the single top signal with the direct top and
top decay signals for these couplings.Comment: 18 pages, 6 figures, 3 table
Bounds on TeV Seesaw Models from LHC Higgs Data
We derive bounds on the Dirac Yukawa couplings of the neutrinos in seesaw
models using the recent Large Hadron Collider (LHC) data on Higgs decays for
the case where the Standard Model singlet heavy leptons needed for the seesaw
mechanism have masses in the 100 GeV range. Such scenarios with large Yukawa
couplings are natural in Inverse Seesaw models since the small neutrino mass
owes its origin to a small Majorana mass of a new set of singlet fermions.
Large Yukawas with sub-TeV mass right-handed neutrinos are also possible for
certain textures in Type-I seesaw models, so that the above bounds also apply
to them. We find that the current Higgs data from the LHC can put bounds on
both electron- and muon-type Yukawa couplings of order 10^{-2}.Comment: 24 pages, 3 figures, 8 tables; version accepted for publication in
PR
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Search for New Particles Decaying to Dijets at CDF
We have used 106 pb^-1 of data collected with the Collider Detector at
Fermilab to search for new particles decaying to dijets. We exclude at the 95%
confidence level models containing the following new particles: axigluons and
flavor universal colorons with mass between 200 and 980 GeV/c, excited quarks
with mass between 80 and 570 GeV/c^2 and between 580 and 760 GeV/c^2, color
octet technirhos with mass between 260 and 480 GeV/c^2, W' bosons with mass
between 300 and 420 GeV/c^2, and E_6 diquarks with mass between 290 and 420
GeV/c^2.Comment: 18 pages, 4 figures, 1 table. Submitted to Physical Review D Rapid
Communications. Postscript file of paper is also available at
http://www-cdf.fnal.gov/physics/pub97/cdf3276_dijet_search_prd_rc.p
- …