3 research outputs found
Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution
Image and video quality in Long Range Observation Systems (LOROS) suffer from
atmospheric turbulence that causes small neighbourhoods in image frames to
chaotically move in different directions and substantially hampers visual
analysis of such image and video sequences. The paper presents a real-time
algorithm for perfecting turbulence degraded videos by means of stabilization
and resolution enhancement. The latter is achieved by exploiting the turbulent
motion. The algorithm involves generation of a reference frame and estimation,
for each incoming video frame, of a local image displacement map with respect
to the reference frame; segmentation of the displacement map into two classes:
stationary and moving objects and resolution enhancement of stationary objects,
while preserving real motion. Experiments with synthetic and real-life
sequences have shown that the enhanced videos, generated in real time, exhibit
substantially better resolution and complete stabilization for stationary
objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on
Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma
de Mallorca, Spai