104 research outputs found

    Learning Residual Finite-State Automata Using Observation Tables

    Full text link
    We define a two-step learner for RFSAs based on an observation table by using an algorithm for minimal DFAs to build a table for the reversal of the language in question and showing that we can derive the minimal RFSA from it after some simple modifications. We compare the algorithm to two other table-based ones of which one (by Bollig et al. 2009) infers a RFSA directly, and the other is another two-step learner proposed by the author. We focus on the criterion of query complexity.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Operational State Complexity of Deterministic Unranked Tree Automata

    Full text link
    We consider the state complexity of basic operations on tree languages recognized by deterministic unranked tree automata. For the operations of union and intersection the upper and lower bounds of both weakly and strongly deterministic tree automata are obtained. For tree concatenation we establish a tight upper bound that is of a different order than the known state complexity of concatenation of regular string languages. We show that (n+1) ( (m+1)2^n-2^(n-1) )-1 vertical states are sufficient, and necessary in the worst case, to recognize the concatenation of tree languages recognized by (strongly or weakly) deterministic automata with, respectively, m and n vertical states.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Accepting Hybrid Networks of Evolutionary Processors with Special Topologies and Small Communication

    Full text link
    Starting from the fact that complete Accepting Hybrid Networks of Evolutionary Processors allow much communication between the nodes and are far from network structures used in practice, we propose in this paper three network topologies that restrict the communication: star networks, ring networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag systems, thus we deduce the existence of a universal ring-AHNEP. For star networks or grid networks, we show a more general result; that is, each recursively enumerable language can be accepted efficiently by a star- or grid-AHNEP. We also present bounds for the size of these star and grid networks. As a consequence we get that each recursively enumerable can be accepted by networks with at most 13 communication channels and by networks where each node communicates with at most three other nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127
    • …
    corecore