21 research outputs found
Spitzer observations of extragalactic H II regions - III. NGC 6822 and the hot star, H II region connection
Using the short-high module of the Infrared Spectrograph on the Spitzer Space
Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56,
and [S III] 18.71-micron emission lines in nine H II regions in the dwarf
irregular galaxy NGC 6822. These lines arise from the dominant ionization
states of the elements neon (Ne, Ne) and sulphur (S,
S), thereby allowing an analysis of the neon to sulphur abundance ratio
as well as the ionic abundance ratios Ne/Ne and S/S.
By extending our studies of H II regions in M83 and M33 to the lower
metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio.
We find that the Ne/S ratio appears to be fairly universal, with not much
variation about the ratio found for NGC 6822: the median (average) Ne/S ratio
equals 11.6 (12.20.8). This value is in contrast to Asplund et al.'s
currently best estimated value for the Sun: Ne/S = 6.5. In addition, we
continue to test the predicted ionizing spectral energy distributions (SEDs)
from various stellar atmosphere models by comparing model nebulae computed with
these SEDs as inputs to our observational data, changing just the stellar
atmosphere model abundances. Here we employ a new grid of SEDs computed with
different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these
changes to the SED show similar trends to those seen upon changing just the
nebular gas metallicities in our plasma simulations: lower metallicity results
in higher ionization. This trend agrees with the observations.Comment: 22 pages, 13 figures. To be published in MNRAS. reference added and
typos fixed. arXiv admin note: text overlap with arXiv:0804.0828, which is
paper II by Rubin et al. (2008
\u3cem\u3eSpitzer\u3c/em\u3e Reveals what is Behind Orion\u27s Bar
We present Spitzer Space Telescope observations of 11 regions south-east (SE) of the Bright Bar in the Orion Nebula, along a radial from the exciting star θ1 Ori C, extending from 2.6 to 12.1 arcmin. Our Cycle 5 programme obtained deep spectra with matching Infrared Spectrograph (IRS) short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin (the ‘Huygens’ Region). The extreme sensitivity of Spitzer in the 10–37 μm spectral range permitted us to measure many lines of interest to much larger distances from θ1 Ori C. Orion is the benchmark for studies of the interstellar medium, particularly for elemental abundances. Spitzer observations provide a unique perspective on the neon and sulphur abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3 +) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.02 ± 0.02) × 10−4 or in terms of the conventional expression, 12 + log(Ne/H) = 8.01 ± 0.01. We obtained corresponding new ground-based spectra at Cerro Tololo Inter-American Observatory (CTIO). These optical data are used to estimate the electron temperature, electron density, optical extinction and the S+/S++ ionization ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase sulphur abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68 ± 0.25) × 10−6 or 12 + log(S/H) = 6.89 ± 0.02. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7–6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =13.0 ± 0.2. We derive the electron density (Ne) versus distance from θ1 Ori C for [S III] (Spitzer) and [S II] (CTIO). Both distributions are for the most part decreasing with increasing distance. The values for Ne[S II] fall below those of Ne[S III] at a given distance except for the outermost position. This general trend is consistent with the commonly accepted blister model for the Orion Nebula. The natural shape of such a blister is concave with an underlying decrease in density with increasing distance from the source of photoionization. Our spectra are the deepest ever taken in these outer regions of Orion over the 10–37 μm range. Tracking the changes in ionization structure via the line emission to larger distances provides much more leverage for understanding the far less studied outer regions. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ∼12 arcmin from θ1 Ori C. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region. The Spitzerspectra are consistent with the Bright Bar being a high-density ‘localized escarpment’ in the larger Orion Nebula picture. Hard ionizing photons reach most solid angles well SE of the Bright Bar. The so-called Orion foreground ‘Veil’, seen prominently in projection at our outermost position 12 arcmin from θ1 Ori C, is likely an H II region–photo-dissociation region (PDR) interface. The Spitzer spectra show very strong enhancements of PDR lines –[Si II] 34.8 μm, [Fe II] 26.0 μm and molecular hydrogen – at the outermost position
Spitzer reveals what's behind Orion's Bar
We present Spitzer Space Telescope observations of 11 regions SE of the
Bright Bar in the Orion Nebula, along a radial from the exciting star
theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep
spectra with matching IRS short-high (SH) and long-high (LH) aperture grid
patterns. Most previous IR missions observed only the inner few arcmin. Orion
is the benchmark for studies of the ISM particularly for elemental abundances.
Spitzer observations provide a unique perspective on the Ne and S abundances by
virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S
(S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is
especially well determined, with a value of (1.01+/-0.08)E-4. We obtained
corresponding new ground-based spectra at CTIO. These optical data are used to
estimate the electron temperature, electron density, optical extinction, and
the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment
for the total gas-phase S abundance because no S+ line is observed by Spitzer.
The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio
may be determined even when the weaker hydrogen line, H(7-6) here, is not
measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =
13.0+/-0.6. We derive the electron density versus distance from theta1OriC for
[S III] and [S II]. Both distributions are for the most part decreasing with
increasing distance. A dramatic find is the presence of high-ionization Ne++
all the way to the outer optical boundary ~12' from theta1OriC. This IR result
is robust, whereas the optical evidence from observations of high-ionization
species (e.g. O++) at the outer optical boundary suffers uncertainty because of
scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity of
existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the
Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this
data using search and parameter-estimation pipelines. Matched filter
algorithms, un-modelled-burst searches and Bayesian parameter-estimation and
model-selection algorithms were applied to the data. We report the efficiency
of these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons
Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons