219 research outputs found

    Warm Inflation with a General Form of the Dissipative Coefficient

    Full text link
    We propose and investigate a general form of the dissipative coefficient Γ=CϕTm/ϕm−1\Gamma=C_{\phi}T^{m}/\phi^{m-1} in warm inflation. We focus on discussing the strong dissipative processes r=Γ/3H≫1r=\Gamma/3H\gg1 in the thermal state of approximate equilibrium. To this toy model, we give the slow-roll conditions, the amplitude and the index of the power spectrum under the general form of dissipative coefficient. Furthermore, the monomial potential and the hybrid-like potential are analyzed specifically. We conclude that the m=0,3m=0,3 cases are worthy further investigation especially.Comment: 24 pages, no figures, to be published on JCA

    Density fluctuations from warm inflation

    Full text link
    Thermal fluctuations provide the main source of large scale density perturbations in warm inflationary models of the early universe. For the first time, general results are obtained for the power spectrum in the case when the friction coefficient in the inflaton equation of motion depends on temperature. A large increase in the amplitude of perturbations occurs when the friction coefficient increases with temperature. This has to be taken into account when constructing models of warm inflation. New results are also given for the thermal fluctuations in the weak regime of warm inflation when the friction coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe

    Gaugino condensation in an improved heterotic M-theory

    Full text link
    Gaugino condensation is discussed in the context of a consistent new version of low energy heterotic M-theory. The four dimensional reduction of the theory is described, based on simple boson and fermion backgrounds. This is generalised to include gaugino condenstates and various background fluxes, some with non-trivial topology. It is found that condensate and quantised flux contributions to the four-dimensional superpotential contain no corrections due to the warping of the higher dimensional metric.Comment: 11 pages, 4 figures, LaTe

    General dissipation coefficient in low-temperature warm inflation

    Get PDF
    In generic particle physics models, the inflaton field is coupled to other bosonic and fermionic fields that acquire large masses during inflation and may decay into light degrees of freedom. This leads to dissipative effects that modify the inflationary dynamics and may generate a nearly-thermal radiation bath, such that inflation occurs in a warm rather than supercooled environment. In this work, we perform a numerical computation and obtain expressions for the associated dissipation coefficient in supersymmetric models, focusing on the regime where the radiation temperature is below the heavy mass threshold. The dissipation coefficient receives contributions from the decay of both on-shell and off-shell degrees of freedom, which are dominant for small and large couplings, respectively, taking into account the light field multiplicities. In particular, we find that the contribution from on-shell decays, although Boltzmann-suppressed, can be much larger than that of virtual modes, which is bounded by the validity of a perturbative analysis. This result opens up new possibilities for realizations of warm inflation in supersymmetric field theories.Comment: 25 pages, 13 figures; revised version with new results added; published in JCA

    Stability analysis for the background equations for inflation with dissipation and in a viscous radiation bath

    Get PDF
    The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation and radiation bulk viscous effects. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart noncausal theory, the linear and causal theory of Israel-Stewart and a more recent nonlinear and causal bulk viscous theory. It is found that the causal theories allow for larger bulk viscosities before encountering an instability in comparison to the noncausal Eckart theory. It is also shown that the causal theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Bulk viscosity coefficients derived from quantum field theory are applied to warm inflation model building and an analysis is made of the effects to the duration of inflation. The treatment of bulk pressure would also be relevant to the reheating phase after inflation in cold inflation dynamics and during the radiation dominated regime, although very little work in both areas has been done, the methodology developed in this paper could be extended to apply to these other problems.Comment: 27 pages, 14 figures, Published version JCA

    One loop effective potential in heterotic M-theory

    Full text link
    We have calculated the one loop effective potential of the vector multiplets arising from the compactification to five dimensions of heterotic M-theory on a Calabi-Yau manifold with h^{1,1}>1. We find that extensive cancellations between the fermionic and bosonic sectors of the theory cause the effective potential to vanish, with the exception of a higher order curvature term of the type which might arise from string corrections.Comment: Latex, 28 pages, 1 figur

    Conformal Anomaly for Free Scalar Propagation on Curved Bounded Manifolds

    Full text link
    The trace anomaly for free propagation in the context of a conformally invariant scalar field theory defined on a curved manifold of positive constant curvature with boundary is evaluated through use of an asymptotic heat kernel expansion. In addition to their direct physical significance the results are also of relevance to the holographic principle and to Quantum Cosmology.Comment: 8 pages. To appear in General Relativity and Gravitatio

    Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms

    Get PDF
    The discrepancy between the results of covariant and non-covariant one-loop calculations for higher-spin fields in quantum cosmology is analyzed. A detailed mode-by-mode study of perturbative quantum gravity about a flat Euclidean background bounded by two concentric 3-spheres, including non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes in agreement with the covariant Schwinger-DeWitt method. This calculation provides the generalization of a previous analysis of fermionic fields and electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50, pages 6329-6337, November 1994. The authors apologize for the delay in circulating the paper, due to technical problems now fixe

    Non-gaussianity in the strong regime of warm inflation

    Full text link
    The bispectrum of scalar mode density perturbations is analysed for the strong regime of warm inflationary models. This analysis generalises previous results by allowing damping terms in the inflaton equation of motion that are dependent on temperature. A significant amount of non-gaussianity emerges with constant (or local) non-linearity parameter fNL∟20f_{NL}\sim 20, in addition to the terms with non-constant fNLf_{NL} which are characteristic of warm inflation.Comment: 15 pages, 3 figures. New plots in v

    Quantum lump dynamics on the two-sphere

    Get PDF
    It is well known that the low-energy classical dynamics of solitons of Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction evolves according to the Hamiltonian H_0 equal to (half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including k, the scalar curvature of M_n, and C, the n-soliton Casimir energy, which are usually difficult to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H_0 and two corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. A hidden isometry of M_1 is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on the zero section of TSO(3), and approximated numerically on the rest of M_1. The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin and parity compared. The curvature corrections in H_1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H_2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H_1 and H_2 is reduced when the target sphere is made smaller.Comment: 35 pages, 3 figure
    • …
    corecore