219 research outputs found
Warm Inflation with a General Form of the Dissipative Coefficient
We propose and investigate a general form of the dissipative coefficient
in warm inflation. We focus on discussing the
strong dissipative processes in the thermal state of
approximate equilibrium. To this toy model, we give the slow-roll conditions,
the amplitude and the index of the power spectrum under the general form of
dissipative coefficient. Furthermore, the monomial potential and the
hybrid-like potential are analyzed specifically. We conclude that the
cases are worthy further investigation especially.Comment: 24 pages, no figures, to be published on JCA
Density fluctuations from warm inflation
Thermal fluctuations provide the main source of large scale density
perturbations in warm inflationary models of the early universe. For the first
time, general results are obtained for the power spectrum in the case when the
friction coefficient in the inflaton equation of motion depends on temperature.
A large increase in the amplitude of perturbations occurs when the friction
coefficient increases with temperature. This has to be taken into account when
constructing models of warm inflation. New results are also given for the
thermal fluctuations in the weak regime of warm inflation when the friction
coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe
Gaugino condensation in an improved heterotic M-theory
Gaugino condensation is discussed in the context of a consistent new version
of low energy heterotic M-theory. The four dimensional reduction of the theory
is described, based on simple boson and fermion backgrounds. This is
generalised to include gaugino condenstates and various background fluxes, some
with non-trivial topology. It is found that condensate and quantised flux
contributions to the four-dimensional superpotential contain no corrections due
to the warping of the higher dimensional metric.Comment: 11 pages, 4 figures, LaTe
General dissipation coefficient in low-temperature warm inflation
In generic particle physics models, the inflaton field is coupled to other
bosonic and fermionic fields that acquire large masses during inflation and may
decay into light degrees of freedom. This leads to dissipative effects that
modify the inflationary dynamics and may generate a nearly-thermal radiation
bath, such that inflation occurs in a warm rather than supercooled environment.
In this work, we perform a numerical computation and obtain expressions for the
associated dissipation coefficient in supersymmetric models, focusing on the
regime where the radiation temperature is below the heavy mass threshold. The
dissipation coefficient receives contributions from the decay of both on-shell
and off-shell degrees of freedom, which are dominant for small and large
couplings, respectively, taking into account the light field multiplicities. In
particular, we find that the contribution from on-shell decays, although
Boltzmann-suppressed, can be much larger than that of virtual modes, which is
bounded by the validity of a perturbative analysis. This result opens up new
possibilities for realizations of warm inflation in supersymmetric field
theories.Comment: 25 pages, 13 figures; revised version with new results added;
published in JCA
Stability analysis for the background equations for inflation with dissipation and in a viscous radiation bath
The effects of bulk viscosity are examined for inflationary dynamics in which
dissipation and thermalization are present. A complete stability analysis is
done for the background inflaton evolution equations, which includes both
inflaton dissipation and radiation bulk viscous effects. Three representative
approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart
noncausal theory, the linear and causal theory of Israel-Stewart and a more
recent nonlinear and causal bulk viscous theory. It is found that the causal
theories allow for larger bulk viscosities before encountering an instability
in comparison to the noncausal Eckart theory. It is also shown that the causal
theories tend to suppress the radiation production due to bulk viscous
pressure, because of the presence of relaxation effects implicit in these
theories. Bulk viscosity coefficients derived from quantum field theory are
applied to warm inflation model building and an analysis is made of the effects
to the duration of inflation. The treatment of bulk pressure would also be
relevant to the reheating phase after inflation in cold inflation dynamics and
during the radiation dominated regime, although very little work in both areas
has been done, the methodology developed in this paper could be extended to
apply to these other problems.Comment: 27 pages, 14 figures, Published version JCA
One loop effective potential in heterotic M-theory
We have calculated the one loop effective potential of the vector multiplets
arising from the compactification to five dimensions of heterotic M-theory on a
Calabi-Yau manifold with h^{1,1}>1. We find that extensive cancellations
between the fermionic and bosonic sectors of the theory cause the effective
potential to vanish, with the exception of a higher order curvature term of the
type which might arise from string corrections.Comment: Latex, 28 pages, 1 figur
Conformal Anomaly for Free Scalar Propagation on Curved Bounded Manifolds
The trace anomaly for free propagation in the context of a conformally
invariant scalar field theory defined on a curved manifold of positive constant
curvature with boundary is evaluated through use of an asymptotic heat kernel
expansion. In addition to their direct physical significance the results are
also of relevance to the holographic principle and to Quantum Cosmology.Comment: 8 pages. To appear in General Relativity and Gravitatio
Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms
The discrepancy between the results of covariant and non-covariant one-loop
calculations for higher-spin fields in quantum cosmology is analyzed. A
detailed mode-by-mode study of perturbative quantum gravity about a flat
Euclidean background bounded by two concentric 3-spheres, including
non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes
in agreement with the covariant Schwinger-DeWitt method. This calculation
provides the generalization of a previous analysis of fermionic fields and
electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a
well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50,
pages 6329-6337, November 1994. The authors apologize for the delay in
circulating the paper, due to technical problems now fixe
Non-gaussianity in the strong regime of warm inflation
The bispectrum of scalar mode density perturbations is analysed for the
strong regime of warm inflationary models. This analysis generalises previous
results by allowing damping terms in the inflaton equation of motion that are
dependent on temperature. A significant amount of non-gaussianity emerges with
constant (or local) non-linearity parameter , in addition to the
terms with non-constant which are characteristic of warm inflation.Comment: 15 pages, 3 figures. New plots in v
Quantum lump dynamics on the two-sphere
It is well known that the low-energy classical dynamics of solitons of
Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli
space of static n-solitons. There is an obvious quantization of this dynamics
wherein the wavefunction evolves according to the Hamiltonian H_0 equal to
(half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical
systems suggests, however, that this simple Hamiltonian should receive
corrections including k, the scalar curvature of M_n, and C, the n-soliton
Casimir energy, which are usually difficult to compute, and whose effect on the
energy spectrum is unknown. This paper analyzes the spectra of H_0 and two
corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and
H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on
the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant
under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry
gives rise to two conserved angular momenta, spin and isospin. A hidden
isometry of M_1 is found which implies that all three energy spectra are
symmetric under spin-isospin interchange. The Casimir energy is found exactly
on the zero section of TSO(3), and approximated numerically on the rest of M_1.
The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin
and parity compared. The curvature corrections in H_1 lead to a qualitatively
unchanged low-level spectrum while the Casimir energy in H_2 leads to
significant changes. The scaling behaviour of the spectra under changes in the
radii of the domain and target spheres is analyzed, and it is found that the
disparity between the spectra of H_1 and H_2 is reduced when the target sphere
is made smaller.Comment: 35 pages, 3 figure
- âŚ