2,911 research outputs found

    Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --

    Get PDF
    It has been suggested that a naked singularity may be a good candidate for a strong gravitational wave burster. The naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We study odd-parity mode of gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi space-time. The wave equation for gravitational waves are solved by numerical integration using the single null coordinate. The result is that the naked singularity is not a strong source of the odd-parity gravitational radiation although the metric perturbation grows in the central region. Therefore, the Cauchy horizon in this space-time would be marginally stable against odd-parity perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final version, with minor changes. Reference 13 adde

    Gravitational Radiation from a Naked Singularity. II - Even-Parity Perturbation -

    Full text link
    A naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We study the even-parity mode of gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi spacetime. The wave equations for gravitational waves are solved by numerical integration using the single null coordinate. The result implies that the metric perturbation grows when it approaches the Cauchy horizon and diverges there, although the naked singularity is not a strong source of even-parity gravitational radiation. Therefore, the Cauchy horizon in this spacetime should be unstable with respect to linear even-parity perturbations.Comment: 16 pages, 5 figures, errors and typos corrected, final versio

    Physical Processes in Naked Singularity Formation

    Get PDF
    Gravitational collapse is one of the most fruitful subjects in gravitational physics. It is well known that singularity formation is inevitable in complete gravitational collapse. It was conjectured that such a singularity should be hidden by horizons if it is formed from generic initial data with physically reasonable matter fields. Many possible counterexamples to this conjecture have been proposed over the past three decades, although none of them has proved to be sufficiently generic. In these examples, there appears a singularity that is not hidden by horizons. This singularity is called a `naked singularity.' The appearance of a naked singularity represents the formation of an observable high-curvature, strong-gravity region. In this paper we review examples of naked singularity formation and recent progress in research of observable physical processes - gravitational radiation and quantum particle creation - from a forming naked singularity.Comment: 76 pages, 25 figure file

    General Connectivity Distribution Functions for Growing Networks with Preferential Attachment of Fractional Power

    Full text link
    We study the general connectivity distribution functions for growing networks with preferential attachment of fractional power, Πikα\Pi_{i} \propto k^{\alpha}, using the Simon's method. We first show that the heart of the previously known methods of the rate equations for the connectivity distribution functions is nothing but the Simon's method for word problem. Secondly, we show that the case of fractional α\alpha the ZZ-transformation of the rate equation provides a fractional differential equation of new type, which coincides with that for PA with linear power, when α=1\alpha = 1. We show that to solve such a fractional differential equation we need define a transidental function Υ(a,s,c;z)\Upsilon (a,s,c;z) that we call {\it upsilon function}. Most of all previously known results are obtained consistently in the frame work of a unified theory.Comment: 10 page

    Partial and macroscopic phase coherences in underdoped Bi2{}_{2}Sr2{}_{2}CaCu2{}_{2}O8+δ{}_{8+{\delta}} thin film

    Full text link
    A combined study with use of time-domain pump-probe spectroscopy and time-domain terahertz transmission spectroscopy have been carried out on an underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+{\delta}} thin film. It was observed that the low energy multi-excitation states were decomposed into superconducting gap and pseudogap. The pseudogap locally opens below T210T^*{\simeq}210 K simultaneously with the appearance of the high-frequency partial pairs around 1.3 THz. With decreasing temperature, the number of the local domains with the partial phase coherence increased and saturated near 100 K, and the macroscopic superconductivity appeared below 76 K through the superconductivity fluctuation state below 100 K. These experimental results indicate that the pseudogap makes an important role for realization of the superconductivity as a precursor to switch from the partial to the macroscopic phase coherence.Comment: Revtex4, 4 pages, 4 figure

    Classical no-cloning theorem under Liouville dynamics by non-Csisz\'ar f-divergence

    Full text link
    The Csisz\'ar f-divergence, which is a class of information distances, is known to offer a useful tool for analysing the classical counterpart of the cloning operations that are quantum mechanically impossible for the factorized and marginality classical probability distributions under Liouville dynamics. We show that a class of information distances that does not belong to this divergence class also allows for the formulation of a classical analogue of the quantum no-cloning theorem. We address a family of nonlinear Liouville-like equations, and generic distances, to obtain constraints on the corresponding functional forms, associated with the formulation of classical analogue of the no-cloning principle.Comment: 6 pages, revised, published versio

    Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems

    Full text link
    A criterion to determine the existence of zero-energy edge states is discussed for a class of particle-hole symmetric Hamiltonians. A ``loop'' in a parameter space is assigned for each one-dimensional bulk Hamiltonian, and its topological properties, combined with the chiral symmetry, play an essential role. It provides a unified framework to discuss zero-energy edge modes for several systems such as fully gapped superconductors, two-dimensional d-wave superconductors, and graphite ribbons. A variants of the Peierls instability caused by the presence of edges is also discussed.Comment: Completely rewritten. Discussions on coexistence of is- or id_{xy}-wave order parameter near edges in d_{x^{2}-y^{2}}-wave superconductors are added; 4 pages, 3 figure
    corecore