9 research outputs found
Bond Characterization of a Unique Thiathiophthene Derivative: Combined Charge Density Study and X‑ray Absorption Spectroscopy
Thiathiophthene (TTP),
a planar molecule with two fused heterocyclic
five-membered rings and an essentially linear S–S–S
bond, is a molecule of great interest due to its unique chemical bondings.
To elucidate the remarkable bonding nature, a combined experimental
and theoretical study on the electron density distribution of 2,5-dimethyl-3,4-trimethylene-6a-TTP
(<b>1</b>) is investigated based on a multipole model through
high-resolution X-ray diffraction data experimentally and on the density
functional calculations (DFT) theoretically. In addition, S K-edge
X-ray absorption spectroscopy (XAS) is measured to verify the chemical
bonding concerning the sulfur atoms. The molecule can be firmly described
as 10Ï€ electron with aromatic character among the eight atoms,
S<sub>3</sub>C<sub>5</sub>, of the two fused five-membered rings plus
three-center four-electron σ character along the S–S–S
bond. Such bonding description is verified with the calculated XAS
spectrum, where the pre-edge absorption for transitions from S 1s
to π* and σ* are located. The three-center four-electron
S–S–S σ bond makes the terminal S atoms richer
in electron density than the central one
Bond Characterization of a Unique Thiathiophthene Derivative: Combined Charge Density Study and X‑ray Absorption Spectroscopy
Thiathiophthene (TTP),
a planar molecule with two fused heterocyclic
five-membered rings and an essentially linear S–S–S
bond, is a molecule of great interest due to its unique chemical bondings.
To elucidate the remarkable bonding nature, a combined experimental
and theoretical study on the electron density distribution of 2,5-dimethyl-3,4-trimethylene-6a-TTP
(<b>1</b>) is investigated based on a multipole model through
high-resolution X-ray diffraction data experimentally and on the density
functional calculations (DFT) theoretically. In addition, S K-edge
X-ray absorption spectroscopy (XAS) is measured to verify the chemical
bonding concerning the sulfur atoms. The molecule can be firmly described
as 10Ï€ electron with aromatic character among the eight atoms,
S<sub>3</sub>C<sub>5</sub>, of the two fused five-membered rings plus
three-center four-electron σ character along the S–S–S
bond. Such bonding description is verified with the calculated XAS
spectrum, where the pre-edge absorption for transitions from S 1s
to π* and σ* are located. The three-center four-electron
S–S–S σ bond makes the terminal S atoms richer
in electron density than the central one
Insight into the Reactivity and Electronic Structure of Dinuclear Dinitrosyl Iron Complexes
A combination of N/S/Fe K-edge X-ray
absorption spectroscopy (XAS), X-ray diffraction data, and density
functional theory (DFT) calculations provides an efficient way to
unambiguously delineate the electronic structures and bonding characters
of Fe–S, N–O, and Fe–N bonds among the direduced-form
Roussin’s red ester (RRE) [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>]<sup>2–</sup>(<b>1</b>) with
{FeÂ(NO)<sub>2</sub>}<sup>10</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> core, the reduced-form RRE [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>]<sup>−</sup>(<b>3</b>) with {FeÂ(NO)<sub>2</sub>}<sup>9</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> core, and
RRE [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>] (<b>4</b>) with {FeÂ(NO)<sub>2</sub>}<sup>9</sup>-{FeÂ(NO)<sub>2</sub>}<sup>9</sup> core. The major contributions of highest occupied molecular
orbital (HOMO) 113α/β in complex <b>1</b> is related
to the antibonding character between FeÂ(d) and FeÂ(d), FeÂ(d), and S
atoms, and bonding character between FeÂ(d) and NOÂ(Ï€*). The effective
nuclear charge (<i><i>Z</i></i><sub>eff</sub>)
of Fe site can be increased by removing electrons from HOMO to shorten
the distances of Fe···Fe and Fe–S from <b>1</b> to <b>3</b> to <b>4</b> or, in contrast, to
increase the Fe–N bond lengths from <b>1</b> to <b>3</b> to <b>4</b>. The higher IR ν<sub>NO</sub> stretching
frequencies (1761, 1720 cm<sup>–1</sup> (<b>4</b>), 1680,
1665 cm<sup>–1</sup> (<b>3</b>), and 1646, 1611, 1603
cm<sup>–1</sup> (<b>1</b>)) associated with the higher
transition energy of N<sub>1s</sub> →σ*Â(NO) (412.6 eV
(<b>4</b>), 412.3 eV (<b>3</b>), and 412.2 eV (<b>1</b>)) and the higher <i><i>Z</i></i><sub>eff</sub> of Fe derived from the transition energy of Fe<sub>1s</sub> →
Fe<sub>3d</sub> (7113.8 eV (<b>4</b>), 7113.5 eV (<b>3</b>), and 7113.3 eV (<b>1</b>)) indicate that the N–O bond
distances of these complexes are in the order of <b>1 > 3 >
4</b>. The N/S/Fe K-edge XAS spectra as well as DFT computations
reveal the reduction of complex <b>4</b> yielding complex <b>3</b> occurs at Fe, S, and NO; in contrast, reduction mainly occurs
at Fe site from complex <b>3</b> to complex <b>1</b>
Bond Characterization of a Unique Thiathiophthene Derivative: Combined Charge Density Study and X‑ray Absorption Spectroscopy
Thiathiophthene (TTP),
a planar molecule with two fused heterocyclic
five-membered rings and an essentially linear S–S–S
bond, is a molecule of great interest due to its unique chemical bondings.
To elucidate the remarkable bonding nature, a combined experimental
and theoretical study on the electron density distribution of 2,5-dimethyl-3,4-trimethylene-6a-TTP
(<b>1</b>) is investigated based on a multipole model through
high-resolution X-ray diffraction data experimentally and on the density
functional calculations (DFT) theoretically. In addition, S K-edge
X-ray absorption spectroscopy (XAS) is measured to verify the chemical
bonding concerning the sulfur atoms. The molecule can be firmly described
as 10Ï€ electron with aromatic character among the eight atoms,
S<sub>3</sub>C<sub>5</sub>, of the two fused five-membered rings plus
three-center four-electron σ character along the S–S–S
bond. Such bonding description is verified with the calculated XAS
spectrum, where the pre-edge absorption for transitions from S 1s
to π* and σ* are located. The three-center four-electron
S–S–S σ bond makes the terminal S atoms richer
in electron density than the central one
Insight into One-Electron Oxidation of the {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complex (DNIC): Aminyl Radical Stabilized by [Fe(NO)<sub>2</sub>] Motif
A reversible redox reaction ({FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNIC
[(NO)<sub>2</sub>FeÂ(NÂ(Mes)Â(TMS))<sub>2</sub>]<sup>−</sup> (<b>4</b>) ⇄ oxidized-form DNIC [(NO)<sub>2</sub>FeÂ(NÂ(Mes)Â(TMS))<sub>2</sub>] (<b>5</b>) (Mes = mesityl, TMS = trimethylsilane)),
characterized by IR, UV–vis, <sup>1</sup>H/<sup>15</sup>N NMR,
SQUID, XAS, single-crystal X-ray structure, and DFT calculation, was
demonstrated. The electronic structure of the oxidized-form DNIC <b>5</b> (<i>S</i><sub>total</sub> = 0) may be best described
as the delocalized aminyl radical [(NÂ(Mes)Â(TMS))<sub>2</sub>]<sub>2</sub><sup>–•</sup> stabilized by the electron-deficient
{Fe<sup>III</sup>(NO<sup>–</sup>)<sub>2</sub>}<sup>9</sup> motif,
that is, substantial spin is delocalized onto the [(NÂ(Mes)Â(TMS))<sub>2</sub>]<sub>2</sub><sup>–•</sup> such that the highly
covalent dinitrosyl iron core (DNIC) is preserved. In addition to
IR, EPR (<i>g</i> ≈ 2.03 for {FeÂ(NO)<sub>2</sub>}<sup>9</sup>), single-crystal X-ray structure (Fe–NÂ(O) and N–O
bond distances), and Fe K-edge pre-edge energy (7113.1–7113.3
eV for {FeÂ(NO)<sub>2</sub>}<sup>10</sup> vs 7113.4–7113.9 eV
for {FeÂ(NO)<sub>2</sub>}<sup>9</sup>), the <sup>15</sup>N NMR spectrum
of [FeÂ(<sup>15</sup>NO)<sub>2</sub>] was also explored to serve as
an efficient tool to characterize and discriminate {FeÂ(NO)<sub>2</sub>}<sup>9</sup> (δ 23.1–76.1 ppm) and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> (δ −7.8–25.0 ppm) DNICs. To the
best of our knowledge, DNIC <b>5</b> is the first structurally
characterized tetrahedral DNIC formulated as covalent–delocalized
[{Fe<sup>III</sup>(NO<sup>–</sup>)<sub>2</sub>}<sup>9</sup>–[NÂ(Mes)Â(TMS)]<sub>2</sub><sup>–•</sup>]. This
result may explain why all tetrahedral DNICs containing monodentate-coordinate
ligands isolated and characterized nowadays are confined in the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> DNICs
in chemistry and biology
Insight into the Reactivity and Electronic Structure of Dinuclear Dinitrosyl Iron Complexes
A combination of N/S/Fe K-edge X-ray
absorption spectroscopy (XAS), X-ray diffraction data, and density
functional theory (DFT) calculations provides an efficient way to
unambiguously delineate the electronic structures and bonding characters
of Fe–S, N–O, and Fe–N bonds among the direduced-form
Roussin’s red ester (RRE) [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>]<sup>2–</sup>(<b>1</b>) with
{FeÂ(NO)<sub>2</sub>}<sup>10</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> core, the reduced-form RRE [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>]<sup>−</sup>(<b>3</b>) with {FeÂ(NO)<sub>2</sub>}<sup>9</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> core, and
RRE [Fe<sub>2</sub>(μ-SPh)<sub>2</sub>(NO)<sub>4</sub>] (<b>4</b>) with {FeÂ(NO)<sub>2</sub>}<sup>9</sup>-{FeÂ(NO)<sub>2</sub>}<sup>9</sup> core. The major contributions of highest occupied molecular
orbital (HOMO) 113α/β in complex <b>1</b> is related
to the antibonding character between FeÂ(d) and FeÂ(d), FeÂ(d), and S
atoms, and bonding character between FeÂ(d) and NOÂ(Ï€*). The effective
nuclear charge (<i><i>Z</i></i><sub>eff</sub>)
of Fe site can be increased by removing electrons from HOMO to shorten
the distances of Fe···Fe and Fe–S from <b>1</b> to <b>3</b> to <b>4</b> or, in contrast, to
increase the Fe–N bond lengths from <b>1</b> to <b>3</b> to <b>4</b>. The higher IR ν<sub>NO</sub> stretching
frequencies (1761, 1720 cm<sup>–1</sup> (<b>4</b>), 1680,
1665 cm<sup>–1</sup> (<b>3</b>), and 1646, 1611, 1603
cm<sup>–1</sup> (<b>1</b>)) associated with the higher
transition energy of N<sub>1s</sub> →σ*Â(NO) (412.6 eV
(<b>4</b>), 412.3 eV (<b>3</b>), and 412.2 eV (<b>1</b>)) and the higher <i><i>Z</i></i><sub>eff</sub> of Fe derived from the transition energy of Fe<sub>1s</sub> →
Fe<sub>3d</sub> (7113.8 eV (<b>4</b>), 7113.5 eV (<b>3</b>), and 7113.3 eV (<b>1</b>)) indicate that the N–O bond
distances of these complexes are in the order of <b>1 > 3 >
4</b>. The N/S/Fe K-edge XAS spectra as well as DFT computations
reveal the reduction of complex <b>4</b> yielding complex <b>3</b> occurs at Fe, S, and NO; in contrast, reduction mainly occurs
at Fe site from complex <b>3</b> to complex <b>1</b>
Insight into One-Electron Oxidation of the {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complex (DNIC): Aminyl Radical Stabilized by [Fe(NO)<sub>2</sub>] Motif
A reversible redox reaction ({FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNIC
[(NO)<sub>2</sub>FeÂ(NÂ(Mes)Â(TMS))<sub>2</sub>]<sup>−</sup> (<b>4</b>) ⇄ oxidized-form DNIC [(NO)<sub>2</sub>FeÂ(NÂ(Mes)Â(TMS))<sub>2</sub>] (<b>5</b>) (Mes = mesityl, TMS = trimethylsilane)),
characterized by IR, UV–vis, <sup>1</sup>H/<sup>15</sup>N NMR,
SQUID, XAS, single-crystal X-ray structure, and DFT calculation, was
demonstrated. The electronic structure of the oxidized-form DNIC <b>5</b> (<i>S</i><sub>total</sub> = 0) may be best described
as the delocalized aminyl radical [(NÂ(Mes)Â(TMS))<sub>2</sub>]<sub>2</sub><sup>–•</sup> stabilized by the electron-deficient
{Fe<sup>III</sup>(NO<sup>–</sup>)<sub>2</sub>}<sup>9</sup> motif,
that is, substantial spin is delocalized onto the [(NÂ(Mes)Â(TMS))<sub>2</sub>]<sub>2</sub><sup>–•</sup> such that the highly
covalent dinitrosyl iron core (DNIC) is preserved. In addition to
IR, EPR (<i>g</i> ≈ 2.03 for {FeÂ(NO)<sub>2</sub>}<sup>9</sup>), single-crystal X-ray structure (Fe–NÂ(O) and N–O
bond distances), and Fe K-edge pre-edge energy (7113.1–7113.3
eV for {FeÂ(NO)<sub>2</sub>}<sup>10</sup> vs 7113.4–7113.9 eV
for {FeÂ(NO)<sub>2</sub>}<sup>9</sup>), the <sup>15</sup>N NMR spectrum
of [FeÂ(<sup>15</sup>NO)<sub>2</sub>] was also explored to serve as
an efficient tool to characterize and discriminate {FeÂ(NO)<sub>2</sub>}<sup>9</sup> (δ 23.1–76.1 ppm) and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> (δ −7.8–25.0 ppm) DNICs. To the
best of our knowledge, DNIC <b>5</b> is the first structurally
characterized tetrahedral DNIC formulated as covalent–delocalized
[{Fe<sup>III</sup>(NO<sup>–</sup>)<sub>2</sub>}<sup>9</sup>–[NÂ(Mes)Â(TMS)]<sub>2</sub><sup>–•</sup>]. This
result may explain why all tetrahedral DNICs containing monodentate-coordinate
ligands isolated and characterized nowadays are confined in the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> DNICs
in chemistry and biology
Insight into the Dinuclear {Fe(NO)<sub>2</sub>}<sup>10</sup>{Fe(NO)<sub>2</sub>}<sup>10</sup> and Mononuclear {Fe(NO)<sub>2</sub>}<sup>10</sup> Dinitrosyliron Complexes
The reversible redox transformations [(NO)<sub>2</sub>FeÂ(S<sup>t</sup>Bu)<sub>2</sub>]<sup>−</sup> ⇌ [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>2–</sup> ⇌
[FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>–</sup> ⇌ [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub> and [cation]Â[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] ⇌ [cation]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] (cation = K<sup>+</sup>-18-crown-6 ether) are demonstrated. The countercation of the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> dinitrosyliron complexes (DNICs) functions to
control the formation of the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced Roussin’s red ester
(RRE) [PPN]<sub>2</sub>[FeÂ(μ-SR)Â(NO)<sub>2</sub>]<sub>2</sub> or the {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric
DNIC [K<sup>+</sup>-18-crown-6 ether]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SR)<sub>2</sub>] upon reduction of the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs [cation]Â[(NO)<sub>2</sub>FeÂ(SR)<sub>2</sub>] (cation
= PPN<sup>+</sup>, K<sup>+</sup>-18-crown-6 ether; R = alkyl). The
binding preference of ligands [OPh]<sup>−</sup>/[SR]<sup>−</sup> toward the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> motif of dianionic reduced RRE follows the ligand-displacement
series [SR]<sup>−</sup> > [OPh]<sup>−</sup>. Compared
to the Fe K-edge preedge energy falling within the range of 7113.6–7113.8
eV for the dinuclear {FeÂ(NO)<sub>2</sub>}<sup>9</sup>{FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs and 7113.4–7113.8 eV for the mononuclear
{FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs, the {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric DNICs and the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced
RREs containing S/O/N-ligation modes display the characteristic preedge
energy 7113.1–7113.3 eV, which may be adopted to probe the
formation of the EPR-silent {FeÂ(NO)<sub>2</sub>}<sup>10</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced RREs and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric DNICs in biology. In addition
to the characteristic Fe/S K-edge preedge energy, the IR ν<sub>NO</sub> spectra may also be adopted to characterize and discriminate
[(NO)<sub>2</sub>FeÂ(μ-S<sup>t</sup>Bu)]<sub>2</sub> [IR ν<sub>NO</sub> 1809 vw, 1778 s, 1753 s cm<sup>–1</sup> (KBr)], [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>–</sup> [IR ν<sub>NO</sub> 1674 s, 1651 s cm<sup>–1</sup> (KBr)], [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>2–</sup> [IR ν<sub>NO</sub> 1637 m, 1613 s, 1578 s, 1567 s cm<sup>–1</sup> (KBr)],
and [K-18-crown-6 ether]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] [IR ν<sub>NO</sub> 1604 s, 1560 s cm<sup>–1</sup> (KBr)]
Insight into the Dinuclear {Fe(NO)<sub>2</sub>}<sup>10</sup>{Fe(NO)<sub>2</sub>}<sup>10</sup> and Mononuclear {Fe(NO)<sub>2</sub>}<sup>10</sup> Dinitrosyliron Complexes
The reversible redox transformations [(NO)<sub>2</sub>FeÂ(S<sup>t</sup>Bu)<sub>2</sub>]<sup>−</sup> ⇌ [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>2–</sup> ⇌
[FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>–</sup> ⇌ [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub> and [cation]Â[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] ⇌ [cation]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] (cation = K<sup>+</sup>-18-crown-6 ether) are demonstrated. The countercation of the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> dinitrosyliron complexes (DNICs) functions to
control the formation of the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced Roussin’s red ester
(RRE) [PPN]<sub>2</sub>[FeÂ(μ-SR)Â(NO)<sub>2</sub>]<sub>2</sub> or the {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric
DNIC [K<sup>+</sup>-18-crown-6 ether]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SR)<sub>2</sub>] upon reduction of the {FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs [cation]Â[(NO)<sub>2</sub>FeÂ(SR)<sub>2</sub>] (cation
= PPN<sup>+</sup>, K<sup>+</sup>-18-crown-6 ether; R = alkyl). The
binding preference of ligands [OPh]<sup>−</sup>/[SR]<sup>−</sup> toward the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> motif of dianionic reduced RRE follows the ligand-displacement
series [SR]<sup>−</sup> > [OPh]<sup>−</sup>. Compared
to the Fe K-edge preedge energy falling within the range of 7113.6–7113.8
eV for the dinuclear {FeÂ(NO)<sub>2</sub>}<sup>9</sup>{FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs and 7113.4–7113.8 eV for the mononuclear
{FeÂ(NO)<sub>2</sub>}<sup>9</sup> DNICs, the {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric DNICs and the {FeÂ(NO)<sub>2</sub>}<sup>10</sup>{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced
RREs containing S/O/N-ligation modes display the characteristic preedge
energy 7113.1–7113.3 eV, which may be adopted to probe the
formation of the EPR-silent {FeÂ(NO)<sub>2</sub>}<sup>10</sup>-{FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced RREs and {FeÂ(NO)<sub>2</sub>}<sup>10</sup> dianionic reduced monomeric DNICs in biology. In addition
to the characteristic Fe/S K-edge preedge energy, the IR ν<sub>NO</sub> spectra may also be adopted to characterize and discriminate
[(NO)<sub>2</sub>FeÂ(μ-S<sup>t</sup>Bu)]<sub>2</sub> [IR ν<sub>NO</sub> 1809 vw, 1778 s, 1753 s cm<sup>–1</sup> (KBr)], [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>–</sup> [IR ν<sub>NO</sub> 1674 s, 1651 s cm<sup>–1</sup> (KBr)], [FeÂ(μ-S<sup>t</sup>Bu)Â(NO)<sub>2</sub>]<sub>2</sub><sup>2–</sup> [IR ν<sub>NO</sub> 1637 m, 1613 s, 1578 s, 1567 s cm<sup>–1</sup> (KBr)],
and [K-18-crown-6 ether]<sub>2</sub>[(NO)<sub>2</sub>FeÂ(SEt)<sub>2</sub>] [IR ν<sub>NO</sub> 1604 s, 1560 s cm<sup>–1</sup> (KBr)]