57 research outputs found
Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification
There is no consensus on how to construct structural brain networks from
diffusion MRI. How variations in pre-processing steps affect network
reliability and its ability to distinguish subjects remains opaque. In this
work, we address this issue by comparing 35 structural connectome-building
pipelines. We vary diffusion reconstruction models, tractography algorithms and
parcellations. Next, we classify structural connectome pairs as either
belonging to the same individual or not. Connectome weights and eight
topological derivative measures form our feature set. For experiments, we use
three test-retest datasets from the Consortium for Reliability and
Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare
pairwise classification results to a commonly used parametric test-retest
measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
Mid-space-independent deformable image registration
Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images
Incompressible image registration using divergence-conforming B-splines
Anatomically plausible image registration often requires volumetric
preservation. Previous approaches to incompressible image registration have
exploited relaxed constraints, ad hoc optimisation methods or practically
intractable computational schemes. Divergence-free velocity fields have been
used to achieve incompressibility in the continuous domain, although, after
discretisation, no guarantees have been provided. In this paper, we introduce
stationary velocity fields (SVFs) parameterised by divergence-conforming
B-splines in the context of image registration. We demonstrate that sparse
linear constraints on the parameters of such divergence-conforming B-Splines
SVFs lead to being exactly divergence-free at any point of the continuous
spatial domain. In contrast to previous approaches, our framework can easily
take advantage of modern solvers for constrained optimisation, symmetric
registration approaches, arbitrary image similarity and additional
regularisation terms. We study the numerical incompressibility error for the
transformation in the case of an Euler integration, which gives theoretical
insights on the improved accuracy error over previous methods. We evaluate the
proposed framework using synthetically deformed multimodal brain images, and
the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate
that our method compares favourably with state-of-the-art methods whilst
achieving volume preservation.Comment: Accepted at MICCAI 201
Quantification of volumetric morphometry and optical property in the cortex of human cerebellum at micrometer resolution
The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases
Feasibility of Using Ultra-High Field (7 T) MRI for Clinical Surgical Targeting
The advantages of ultra-high magnetic field (7 Tesla) MRI for basic science research and neuroscience applications have proven invaluable. Structural and functional MR images of the human brain acquired at 7 T exhibit rich information content with potential utility for clinical applications. However, (1) substantial increases in susceptibility artifacts, and (2) geometrical distortions at 7 T would be detrimental for stereotactic surgeries such as deep brain stimulation (DBS), which typically use 1.5 T images for surgical planning. Here, we explore whether these issues can be addressed, making feasible the use of 7 T MRI to guide surgical planning. Twelve patients with Parkinson's disease, candidates for DBS, were scanned on a standard clinical 1.5 T MRI and a 7 T MRI scanner. Qualitative and quantitative assessments of global and regional distortion were evaluated based on anatomical landmarks and transformation matrix values. Our analyses show that distances between identical landmarks on 1.5 T vs. 7 T, in the mid-brain region, were less than one voxel, indicating a successful co-registration between the 1.5 T and 7 T images under these specific imaging parameter sets. On regional analysis, the central part of the brain showed minimal distortion, while inferior and frontal areas exhibited larger distortion due to proximity to air-filled cavities. We conclude that 7 T MR images of the central brain regions have comparable distortions to that observed on a 1.5 T MRI, and that clinical applications targeting structures such as the STN, are feasible with information-rich 7 T imaging
A variational joint segmentation and registration framework for multimodal images
Image segmentation and registration are closely related image processing techniques and often required as simultaneous tasks. In this work, we introduce an optimization-based approach to a joint registration and segmentation model for multimodal images deformation. The model combines an active contour variational term with mutual information (MI) smoothing fitting term and solves in this way the difficulties of simultaneously performed segmentation and registration models for multimodal images. This combination takes into account the image structure boundaries and the movement of the objects, leading in this way to a robust dynamic scheme that links the object boundaries information that changes over time. Comparison of our model with state of art shows that our method leads to more consistent registrations and accurate results
- …