3 research outputs found

    Graphene and Thin-Film Semiconductor Heterojunction Transistors Integrated on Wafer Scale for Low-Power Electronics

    No full text
    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene–thin-film-semiconductor–metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene–In–Ga–Zn–O (IGZO)–metal asymmetric junctions on a transparent 150 × 150 mm<sup>2</sup> glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (<i>I</i><sub>on</sub>/<i>I</i><sub>off</sub>) up to 10<sup>6</sup> with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V

    Graphene for True Ohmic Contact at Metal–Semiconductor Junctions

    No full text
    The rectifying Schottky characteristics of the metal–semiconductor junction with high contact resistance have been a serious issue in modern electronic devices. Herein, we demonstrated the conversion of the Schottky nature of the Ni–Si junction, one of the most commonly used metal–semiconductor junctions, into an Ohmic contact with low contact resistance by inserting a single layer of graphene. The contact resistance achieved from the junction incorporating graphene was about 10<sup>–8</sup> ∼ 10<sup>–9</sup> Ω cm<sup>2</sup> at a Si doping concentration of 10<sup>17</sup> cm<sup>–3</sup>

    Engineering Optical and Electronic Properties of WS<sub>2</sub> by Varying the Number of Layers

    No full text
    The optical constants, bandgaps, and band alignments of mono-, bi-, and trilayer WS<sub>2</sub> were experimentally measured, and an extraordinarily high dependency on the number of layers was revealed. The refractive indices and extinction coefficients were extracted from the optical-contrast oscillation for various thicknesses of SiO<sub>2</sub> on a Si substrate. The bandgaps of the few-layer WS<sub>2</sub> were both optically and electrically measured, indicating high exciton-binding energies. The Schottky-barrier heights (SBHs) with Au/Cr contact were also extracted, depending on the number of layers (1–28). From an engineering viewpoint, the bandgap can be modulated from 3.49 to 2.71 eV with additional layers. The SBH can also be reduced from 0.37 eV for a monolayer to 0.17 eV for 28 layers. The technique of engineering materials’ properties by modulating the number of layers opens pathways uniquely adaptable to transition-metal dichalcogenides
    corecore