8,431 research outputs found
Parity Nonconservation in the Photodisintegration of the Deuteron at Low Energy
The parity-nonconserving asymmetry in the deuteron photodisintegration,
, is considered with the photon energy ranged up to 10
MeV above the threshold. The aim is to improve upon a schematic estimate
assuming the absence of tensor as well as spin-orbit forces in the
nucleon-nucleon interaction. The major contributions are due to the
vector-meson exchanges, and the strong suppression of the pion-exchange
contribution is confirmed. A simple argument, going beyond the observation of
an algebraic cancellation, is presented. Contributions of meson-exchange
currents are also considered, but found to be less significant.Comment: 12 pages, 6 figures, typeset by REVTeX (two-column format) and BIBTe
Parity violation in scattering and vector-meson weak-coupling constants
We calculate the parity-nonconserving longitudinal asymmetry in the elastic
scattering at the energies where experimental data are available.
In addition to the standard one-meson exchange weak potential, the variation of
the strong-coupling constants and the non-standard effects such as form factors
and -exchange description of the -exchange potential are taken
into account. With the extra effects, we investigate the compatibility of the
experimental data and the presently-known range of the vector-meson
weak-coupling constants.Comment: Contribution to the proceedings of the 3rd Asia-Pacific conference on
few-body problems in physics, Suranaree Univ. of Technology, Nakhon
Ratchasima, Thailand, July 26 - 30, 200
Deuteron Anapole Moment with Heavy Mesons
Parity-nonconserving two-body currents due to vector meson exchange are
considered with the aim to determine the related contributions to the anapole
moment. A particular attention is given to the requirement of current
conservation which is essential for a reliable estimate of this quantity. An
application is made for the deuteron case.Comment: 23 pages, 5 EPS figures, uses REVTeX 4, v2: fixes layout problem
Neutron Stars with Bose-Einstein Condensation of Antikaons as MIT Bags
We investigate the properties of an antikaon in medium, regarding itas a MIT
bag. We first construct the MIT bag model for a kaon with and
in order to describe the interaction of-quarks in hyperonic matter in the
framework of the modifiedquark-meson coupling model. The coupling constant
in the density-dependent bag constant is treated
as afree parameter to reproduce the optical potential of a kaon in asymmetric
matter and all other couplings are determined by usingSU(6) symmetry and the
quark counting rule. With various values ofthe kaon potential, we calculate the
effective mass of a kaon inmedium to compare it with that of a point-like kaon.
We thencalculate the population of octet baryons, leptons and and
theequation of state for neutron star matter. The results show thatkaon
condensation in hyperonic matter is sensitive to the -quarkinteraction and
also to the way of treating the kaon. The mass andthe radius of a neutron star
are obtained by solving theTolmann-Oppenheimer-Volkoff equation.Comment: 14 figure
Optical conductivity of one-dimensional narrow-gap semiconductors
The optical conductivities of two one-dimensional narrow-gap semiconductors,
anticrossing quantum Hall edge states and carbon nanotubes, are studied using
bosonization method. A lowest order renormalization group analysis indicates
that the bare band gap can be treated perturbatively at high
frequency/temperature. At very low energy scale the optical conductivity is
dominated by the excitonic contribution, while at temperature higher than a
crossover temperature the excitonic features are eliminated by thermal
fluctuations. In case of carbon nanotubes the crossover temperature scale is
estimated to be 300 K.Comment: RevTeX4 file, 6 pages, no figur
Two-pion-exchange parity-violating potential and
We calculate the parity-violating nucleon-nucleon potential in heavy-baryon
chiral perturbation theory up to the next-to-next-to-leading order. The
one-pion exchange comes in the leading order and the next-to-next-to-leading
order consists of two-pion-exchange and the two-nucleon contact terms. In order
to investigate the effect of the higher order contributions, we calculate the
parity-violating asymmetry in at the threshold. The
one-pion dominates the physical observable and the two-pion contribution is
about or less than 10% of the one-pion contribution.Comment: 3 pages, contribution to the workshop PAVI06 held in Milos island,
Greece, May 16-20, 200
- âŠ