139 research outputs found

    The Antioxidant Activity and Their Major Antioxidant Compounds from Acanthopanax senticosus and A. koreanum

    Get PDF
    The antioxidant activity and chlorogenic acid and caffeic acid contents were investigated from different parts of Acanthopanax senticosus and A. koreanum. Antioxidant activity was assessed by various in vitro assays such as DPPH, ABTS, FRAP, reducing power assays and ORAC, and the chlorogenic acid and caffeic acid were validated by HPLC chromatography. Among the various extracts, the fruit extracts of A. senticosus and A. koreanum exhibited strongest antioxidant activities including ABTS, FRAP, reducing power and ORAC, however, strongest DPPH radical scavenging activity was observed from the leaf extract of A. senticosus. In addition, the antioxidant activities of various extracts were correlated with total phenolic and proanthocyanidin contents. The major phenolic contents from various parts of these plants observed that leaf extract of A. senticosus expressed higher levels of chlorogenic acid (14.86 mg/dry weigh g) and caffeic acid (3.09 mg/dry weigh g) than other parts. Therefore, these results suggest that the leaf of A. senticosus may be an excellent natural source for functional foods and pharmaceutical agents, and the validated method was useful for the quality control of A. senticosus

    Different degree of cytokinemia and T-cell activation according to serum IL-6 levels in critical COVID-19

    Get PDF
    IntroductionTocilizumab, a humanized anti-interleukin-6 receptor (IL-6R) antibody, is recommended for the treatment of severe to critical coronavirus diseases 2019 (COVID-19). However, there were conflicting results on the efficacy of tocilizumab. Therefore, we hypothesized that the differences in tocilizumab efficacy may stem from the different immune responses of critical COVID-19 patients. In this study, we described two groups of immunologically distinct COVID-19 patients, based on their IL-6 response.MethodsWe prospectively enrolled critical COVID-19 patients, requiring oxygen support with a high flow nasal cannula or a mechanical ventilator, and analyzed their serial samples. An enzyme-linked immunosorbent assay and flow cytometry were used to evaluate the cytokine kinetics and cellular immune responses, respectively.ResultsA total of nine patients with critical COVID-19 were included. The high (n = 5) and low IL-6 (n = 4) groups were distinguished by their peak serum IL-6 levels, using 400 pg/mL as the cut-off value. Although the difference of flow cytometric data did not reach the level of statistical significance, the levels of pro-inflammatory cytokines and the frequencies of intermediate monocytes (CD14+CD16+), IFN-Îł+ CD4+ or CD8+ T cells, and HLA-DR+PD-1+ CD4+ T cells were higher in the high IL-6 group than in the low IL-6 group.ConclusionThere were distinctive two groups of critical COVID-19 according to serum IL-6 levels having different degrees of cytokinemia and T-cell responses. Our results indicate that the use of immune modulators should be more tailored in patients with critical COVID-19

    Differentially Expressed Potassium Channels Are Associated with Function of Human Effector Memory CD8+T cells

    Get PDF
    The voltage-gated potassium channel, Kv1.3, and the Ca2+-activated potassium channel, KCa3.1, regulate membrane potentials in T cells, thereby controlling T cell activation and cytokine production. However, little is known about the expression and function of potassium channels in human effector memory ( EM) CD8+ T cells that can be further divided into functionally distinct subsets based on the expression of the interleukin ( IL)-7 receptor alpha ( IL-7R alpha) chain. Herein, we investigated the functional expression and roles of Kv1.3 and KCa3.1 in EM CD8+ T cells that express high or low levels of the IL-7 receptor alpha chain ( IL-7R alpha(high) and IL-7R alpha(low), respectively). In contrast to the significant activity of Kv1.3 and KCa3.1 in IL-7Rahigh EM CD8+ T cells, IL-7Ralow EM CD8+ T cells showed lower expression of Kv1.3 and insignificant expression of KCa3.1. Kv1.3 was involved in the modulation of cell proliferation and IL-2 production, whereas KCa3.1 affected the motility of EM CD8+ T cells. The lower motility of IL-7Ralow EM CD8+ T cells was demonstrated using transendothelial migration and motility assays with intercellular adhesion molecule 1-and/or chemokine stromal cell-derived factor-1 alpha-coated surfaces. Consistent with the lower migration property, IL-7Ralow EM CD8+ T cells were found less frequently in human skin. Stimulating IL-7Ralow EM CD8+ T cells with IL-2 or IL-15 increased their motility and recovery of KCa3.1 activity. Our findings demonstrate that Kv1.3 and KCa3.1 are differentially involved in the functions of EM CD8+ T cells. The weak expression of potassium channels in IL-7Ralow EM CD8+ T cells can be revived by stimulation with IL-2 or IL-15, which restores the associated functions. This study suggests that IL-7Rahigh EM CD8+ T cells with functional potassium channels may serve as a reservoir for effector CD8+ T cells during peripheral inflammation.112Ysciescopu

    NOTCH1 can initiate NF-ÎșB activation via cytosolic interactions with components of the T cell Signalosome.

    Get PDF
    T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-ÎșB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-ÎșB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-ÎșB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCΞ, a T cell-specific kinase important for CBM assembly and classical NF-ÎșB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCΞ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-ÎșB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-ÎșB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-ÎșB signaling

    Subspecific Status of the Korean Tiger Inferred by Ancient DNA Analysis

    Get PDF
    The tiger population that once inhabited the Korean peninsula was initially considered a unique subspecies (Panthera tigris coreensis), distinct from the Amur tiger of the Russian Far East (P. t. altaica). However, in the following decades, the population of P. t. coreensis was classified as P. t. altaica and hence forth the two populations have been considered the same subspecies. From an ecological point of view, the classification of the Korean tiger population as P. t. altaica is a plausible conclusion. Historically, there were no major dispersal barriers between the Korean peninsula and the habitat of Amur tigers in Far Eastern Russia and northeastern China that might prevent gene flow, especially for a large carnivore with long-distance dispersal abilities. However, there has yet to be a genetic study to confirm the subspecific status of the Korean tiger. Bone samples from four tigers originally caught in the Korean peninsula were collected from two museums in Japan and the United States. Eight mitochondrial gene fragments were sequenced and compared to previously published tiger subspecies\u27 mtDNA sequences to assess the phylogenetic relationship of the Korean tiger. Three individuals shared an identical haplotype with the Amur tigers. One specimen grouped with Malayan tigers, perhaps due to misidentification or mislabeling of the sample. Our results support the conclusion that the Korean tiger should be classified as P. t. altaica, which has important implications for the conservation and reintroduction of Korean tigers

    Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice

    Get PDF
    Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging. © 2016 The Author(s)1761sciescopu

    Chromatin accessibility of circulating CD8(+) T cells predicts treatment response to PD-1 blockade in patients with gastric cancer

    Get PDF
    Although tumor genomic profiling has identified small subsets of gastric cancer (GC) patients with clinical benefit from anti-PD-1 treatment, not all responses can be explained by tumor sequencing alone. We investigate epigenetic elements responsible for the differential response to anti-PD-1 therapy by quantitatively assessing the genome-wide chromatin accessibility of circulating CD8(+) T cells in patients' peripheral blood. Using an assay for transposase-accessible chromatin using sequencing (ATAC-seq), we identify unique open regions of chromatin that significantly distinguish anti-PD-1 therapy responders from non-responders. GC patients with high chromatin openness of circulating CD8(+) T cells are significantly enriched in the responder group. Concordantly, patients with high chromatin openness at specific genomic positions of their circulating CD8(+) T cells demonstrate significantly better survival than those with closed chromatin. Here we reveal that epigenetic characteristics of baseline CD8(+) T cells can be used to identify metastatic GC patients who may benefit from anti-PD-1 therapy. Anti-PD-1 therapy could induce a durable response in patients with gastric cancer, however biomarkers to predict response to immunotherapy are generally lacking. Here the authors report that openness of chromatin in circulating CD8(+) T cells predicts treatment outcome in patients with metastatic gastric cancer treated with pembrolizumab

    The acidic tumor microenvironment enhances PD-L1 expression via activation of STAT3 in MDA-MB-231 breast cancer cells

    Get PDF
    Abstract Tumor acidosis, a common phenomenon in solid cancers such as breast cancer, is caused by the abnormal metabolism of cancer cells. The low pH affects cells surrounding the cancer, and tumor acidosis has been shown to inhibit the activity of immune cells. Despite many previous studies, the immune surveillance mechanisms are not fully understood. We found that the expression of PD-L1 was significantly increased under conditions of extracellular acidosis in MDA-MB-231 cells. We also confirmed that the increased expression of PD-L1 mediated by extracellular acidosis was decreased when the pH was raised to the normal range. Gene set enrichment analysis (GSEA) of public breast cancer patient databases showed that PD-L1 expression was also highly correlated with IL-6/JAK/STAT3 signaling. Surprisingly, the expression of both phospho-tyrosine STAT3 and PD-L1 was significantly increased under conditions of extracellular acidosis, and inhibition of STAT3 did not increase the expression of PD-L1 even under acidic conditions in MDA-MB-231 cells. Based on these results, we suggest that the expression of PD-L1 is increased by tumor acidosis via activation of STAT3 in MDA-MB-231 cells.This work was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean government (NRF-2018R1A5A2025964) and the Seoul National University Hospital (SNUH) Research Fund (04–20200230). This study was also carried out with support from the R&D Program for Forest Science Technology (Project No. 2020195A00–2122-BA01) of the Korea Forest Service (Korea Forestry Promotion Institute) and Cooperative Research Program for the Agriculture Science and Technology Development (Project No. PJ01589402 and No. PJ016202022) Rural Development Administration, Republic of Korea

    Anyonic physical observables and spin phase transition

    Full text link
    The quantization of charged matter system coupled to Chern-Simons gauge fields is analyzed in a covariant gauge fixing, and gauge invariant physical anyon operators satisfying fractional statistics are constructed in a symmetric phase, based on Dirac's recipe performed on QED. This method provides us a definite way of identifying physical spectrums free from gauge ambiguity and constructing physical anyon operators under a covariant gauge fixing. We then analyze the statistical spin phase transition in a symmetry-broken phase and show that the Higgs mechanism transmutes an anyon satisfying fractional statistics into a canonical boson, a spin 0 Higgs boson or a topologically massive photon.Comment: 14 pages, added references, a few improvement

    Broad humoral and cellular immunity elicited by one-dose mRNA vaccination 18 months after SARS-CoV-2 infection

    Get PDF
    Practical guidance is needed regarding the vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals in resource-limited countries. It includes the number of vaccine doses that should be given to unvaccinated patients who experienced COVID-19 early in the pandemic. We recruited COVID-19 convalescent individuals who received one or two doses of an mRNA vaccine within 6 or around 18 months after a diagnosis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Their samples were assessed for IgG-binding or neutralizing activity and cell-mediated immune responses against SARS-CoV-2 wild-type and variants of concern. A total of 43 COVID-19 convalescent individuals were analyzed in the present study. The results showed that humoral and cellular immune responses against SARS-CoV-2 wild-type and variants of concern, including the Omicron variant, were comparable among patients vaccinated within 6 versus around 18 months. A second dose of vaccine did not significantly increase immune responses. One dose of mRNA vaccine should be considered sufficient to elicit a broad immune response even around 18 months after a COVID-19 diagnosis.This work was supported in part by the Bio & Medical Technology Develop‑ ment Program of the National Research Foundation (NRF) & funded by the Korean government (MSIT) (2021M3A9I2080496, to H.-R. Kim & W. B. Park), the Creative-Pioneering Researchers Program through Seoul National University (to C.-H. Lee), and the Seoul National University Hospital Research Fund (112021-5050 to P. G. Choe and 800-20220110 to C.-H. Lee)
    • 

    corecore