21 research outputs found

    Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes

    No full text
    For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4–0.5 cm<sup>3</sup>/g), wide open pore size (19–31 nm), and small primary silicon particles (20–35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100–1700 mAh g<sup>–1</sup> and 640–1000 mAh cm<sup>–3</sup> at 100 mA g<sup>–1</sup>), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes
    corecore