539 research outputs found
On the Convergence Speed of MDL Predictions for Bernoulli Sequences
We consider the Minimum Description Length principle for online sequence
prediction. If the underlying model class is discrete, then the total expected
square loss is a particularly interesting performance measure: (a) this
quantity is bounded, implying convergence with probability one, and (b) it
additionally specifies a `rate of convergence'. Generally, for MDL only
exponential loss bounds hold, as opposed to the linear bounds for a Bayes
mixture. We show that this is even the case if the model class contains only
Bernoulli distributions. We derive a new upper bound on the prediction error
for countable Bernoulli classes. This implies a small bound (comparable to the
one for Bayes mixtures) for certain important model classes. The results apply
to many Machine Learning tasks including classification and hypothesis testing.
We provide arguments that our theorems generalize to countable classes of
i.i.d. models.Comment: 17 page
New error bounds for Solomonoff prediction
Solomonoff sequence prediction is a scheme to predict digits of binary strings without knowing the underlying probability distribution. We call a prediction scheme informed when it knows the true probability distribution of the sequence. Several new relations between universal Solomonoff sequence prediction and informed prediction and general probabilistic prediction schemes will be proved. Among others, they show that the number of errors in Solomonoff prediction is finite for computable distributions, if finite in the informed case. Deterministic variants will also be studied. The most interesting result is that the deterministic variant of Solomonoff prediction is optimal compared to any other probabilistic or deterministic prediction scheme apart from additive square root corrections only. This makes it well suited even for difficult prediction problems, where it does not suffice when the number of errors is minimal to within some factor greater than one. Solomonoff's original bound and the ones presented here complement each other in a useful way
Strong Asymptotic Assertions for Discrete MDL in Regression and Classification
We study the properties of the MDL (or maximum penalized complexity)
estimator for Regression and Classification, where the underlying model class
is countable. We show in particular a finite bound on the Hellinger losses
under the only assumption that there is a "true" model contained in the class.
This implies almost sure convergence of the predictive distribution to the true
one at a fast rate. It corresponds to Solomonoff's central theorem of universal
induction, however with a bound that is exponentially larger.Comment: 6 two-column page
Sequential Predictions based on Algorithmic Complexity
This paper studies sequence prediction based on the monotone Kolmogorov
complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is
extremely close to Solomonoff's universal prior M, the latter being an
excellent predictor in deterministic as well as probabilistic environments,
where performance is measured in terms of convergence of posteriors or losses.
Despite this closeness to M, it is difficult to assess the prediction quality
of m, since little is known about the closeness of their posteriors, which are
the important quantities for prediction. We show that for deterministic
computable environments, the "posterior" and losses of m converge, but rapid
convergence could only be shown on-sequence; the off-sequence convergence can
be slow. In probabilistic environments, neither the posterior nor the losses
converge, in general.Comment: 26 pages, LaTe
Can intelligence explode?
The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. It took many decades for these ideas to spread from science fiction to popular science magazines and finally to attract the attention of serious philosophers. David Chalmers' (JCS, 2010) article is the first comprehensive philosophical analysis of the singularity in a respected philosophy journal. The motivation of my article is to augment Chalmers' and to discuss some issues not addressed by him, in particular what it could mean for intelligence to explode. In this course, I will (have to) provide a more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity
Self-Optimizing and Pareto-Optimal Policies in General Environments based on Bayes-Mixtures
The problem of making sequential decisions in unknown probabilistic
environments is studied. In cycle action results in perception
and reward , where all quantities in general may depend on the complete
history. The perception and reward are sampled from the (reactive)
environmental probability distribution . This very general setting
includes, but is not limited to, (partial observable, k-th order) Markov
decision processes. Sequential decision theory tells us how to act in order to
maximize the total expected reward, called value, if is known.
Reinforcement learning is usually used if is unknown. In the Bayesian
approach one defines a mixture distribution as a weighted sum of
distributions \nu\in\M, where \M is any class of distributions including
the true environment . We show that the Bayes-optimal policy based
on the mixture is self-optimizing in the sense that the average value
converges asymptotically for all \mu\in\M to the optimal value achieved by
the (infeasible) Bayes-optimal policy which knows in advance. We
show that the necessary condition that \M admits self-optimizing policies at
all, is also sufficient. No other structural assumptions are made on \M. As
an example application, we discuss ergodic Markov decision processes, which
allow for self-optimizing policies. Furthermore, we show that is
Pareto-optimal in the sense that there is no other policy yielding higher or
equal value in {\em all} environments \nu\in\M and a strictly higher value in
at least one.Comment: 15 page
On Universal Prediction and Bayesian Confirmation
The Bayesian framework is a well-studied and successful framework for
inductive reasoning, which includes hypothesis testing and confirmation,
parameter estimation, sequence prediction, classification, and regression. But
standard statistical guidelines for choosing the model class and prior are not
always available or fail, in particular in complex situations. Solomonoff
completed the Bayesian framework by providing a rigorous, unique, formal, and
universal choice for the model class and the prior. We discuss in breadth how
and in which sense universal (non-i.i.d.) sequence prediction solves various
(philosophical) problems of traditional Bayesian sequence prediction. We show
that Solomonoff's model possesses many desirable properties: Strong total and
weak instantaneous bounds, and in contrast to most classical continuous prior
densities has no zero p(oste)rior problem, i.e. can confirm universal
hypotheses, is reparametrization and regrouping invariant, and avoids the
old-evidence and updating problem. It even performs well (actually better) in
non-computable environments.Comment: 24 page
Feature Dynamic Bayesian Networks
Feature Markov Decision Processes (PhiMDPs) are well-suited for learning
agents in general environments. Nevertheless, unstructured (Phi)MDPs are
limited to relatively simple environments. Structured MDPs like Dynamic
Bayesian Networks (DBNs) are used for large-scale real-world problems. In this
article I extend PhiMDP to PhiDBN. The primary contribution is to derive a cost
criterion that allows to automatically extract the most relevant features from
the environment, leading to the "best" DBN representation. I discuss all
building blocks required for a complete general learning algorithm.Comment: 7 page
Fast Non-Parametric Bayesian Inference on Infinite Trees
Given i.i.d. data from an unknown distribution, we consider the problem of
predicting future items. An adaptive way to estimate the probability density is
to recursively subdivide the domain to an appropriate data-dependent
granularity. A Bayesian would assign a data-independent prior probability to
"subdivide", which leads to a prior over infinite(ly many) trees. We derive an
exact, fast, and simple inference algorithm for such a prior, for the data
evidence, the predictive distribution, the effective model dimension, and other
quantities.Comment: 8 twocolumn pages, 3 figure
- …