521 research outputs found

    Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane

    Get PDF
    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε_bulk^C and ε_bulk^Cl were: -4.0±0.2¿ and no chlorine isotope fractionation with PS, -1.6±0.2¿ and -4.7±0.1¿ for HY/DH, -7.8±0.4¿ and -5.2±0.2¿ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33±0.04 for HY/DH and 1.5±0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε_bulk^C<ε_bulk^Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach abiotic transformation processes can unambiguously be identified and quantified

    From Projects to Processes to Implement Life Cycle Management in Business

    Get PDF

    Compound-Specific Chlorine Isotope Analysis of the Herbicides Atrazine, Acetochlor, and Metolachlor

    Get PDF
    A gas chromatography-single quadrupole mass spectrometry method was developed and validated for compound-specific chlorine isotope analysis (Cl-CSIA) of three chlorinated herbicides, atrazine, acetochlor, and metolachlor, which are widespread contaminants in the environment. For each compound, the two most abundant ions containing chlorine (202/200 for atrazine, 225/223 for acetochlor, and 240/238 for metolachlor) and a dwell time of 30 ms were determined as optimized MS parameters. A limit of precise isotope analysis for ethyl acetate solutions of 10 mg/L atrazine, 10 mg/L acetochlor, and 5 mg/L metolachlor could be reached with an associated uncertainty between 0.5 and 1 . To this end, samples were measured 10-fold and bracketed with two calibration standards that covered a wide range of δ37Cl values and for which amplitudes matched those of the samples within 20% tolerance. The method was applied to investigate chlorine isotope fractionation during alkaline hydrolysis of metolachlor, which showed a shift in δ37Cl of +46 after 98% degradation, demonstrating that chlorine isotope fractionation could be a sensitive indicator of transformation processes even when limited degradation occurs. This method, combined with large-volume solid-phase extraction (SPE), allowed application of Cl-CSIA to environmentally relevant concentrations of widespread herbicides (i.e., 0.5-5 μg/L in water before extraction). Therefore, the combination of large-volume SPE and Cl-CSIA is a promising tool for assessing the transformation processes of these pollutants in the environment

    A life cycle stakeholder management framework for enhanced collaboration between stakeholders with competing interests

    Get PDF
    This is a postprint version of the Book Chapter. Information regarding the official publication is available from the link below - Copyright @ 2011 SpringerImplementation of a Life Cycle Sustainability Management (LCSM) strategy can involve significant challenges because of competing or conflicting objectives between stakeholders. These differences may, if not identified and managed, hinder successful adoption of sustainability initiatives. This article proposes a conceptual framework for stakeholder management in a LCSM context. The framework identifies the key sustainability stakeholder groups and suggests strategic ambiguity as a management tool to harness dysfunctional conflict into constructive collaboration. The framework is of practical value as it can be used as a guideline by managers who wish to improve collaboration with stakeholders along the supply chain. The article also fills a gap in the academic literature where there is only limited research on sustainability stakeholder management through strategic ambiguity

    Life Cycle Assessment

    Get PDF
    Life cycle assessment (LCA) methodology is a standardized method for assessing the potential environmental impact of a product or service throughout its lifetime (ISO 14040). As such, it represents a valuable tool by which researchers and organizations can identify, and avoid, unnecessary environmental burdens that have a negative impact on the ecological health of the globe. Environmental sustainability challenges mainly stem from humanity’s current production and consumption habits. In this regard, there is a need to develop production practices and consumption behaviors that support sustainable development. It is imperative that we find solutions by which we can reduce environmental impacts and resource use within production chains. The first ISO standard for LCAs was published in 1996, and updated versions 14040 and 14044 were published in 2006. These LCA standards act as valuable guidelines and standards by which practitioners can reduce their carbon footprint and product environmental footprint. It also acts as a tool that can support decision-making pertaining to various questions related to the environmental impacts of products and systems.Post-print / Final draf
    corecore