29 research outputs found
Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
The 3 phase induction motor is a reliable and strong motor also has cheap price. However induction motor are also vulnerable, from the result of survey conducted by Electric Power Research Institute (EPRI), there are 41% cases of damage occur in the bearing caused by working environment condition, bearing age, and several other factors. Bearing fault is not easily to identified, with applying the data extraction method using the Discrete Wavelet Transform (DWT) and the K-Medoids clustering method will facilitate the identification process. The extraction method will pass the data in the form of current signals into the digital filter (Low Pass Filter and High Pass Filter) to be mapped into the region of frequency and time simultaneously, and clustering method will group data based on certain characteristics. Based on the clustering tests that have been done on the 3 phase induction motor current signal data with 3 bearing conditions, the Discrete Wavelet Transformation with mother wavelet bior1.1 decomposition level 2 and K-Medoids produce an accuracy rate of 86.8%
Development of empirical mode decomposition based neural network for power quality disturbances classification
The complexity of the electric power network causes a lot of distortion, such as a decrease in power quality (PQ) in the form of voltage variations, harmonics, and frequency fluctuations. Monitoring the distortion source is important to ensure the availability of clean and quality electric power. Therefore, this study aims to classify power quality using a neural network with empirical mode decomposition-based feature extraction. The proposed method consists of 2 main steps, namely feature extraction, and classification. Empirical Mode Decomposition (EMD) was also applied to categorize the PQ disturbances into several intrinsic mode functions (IMF) components, which were extracted using statistical parameters and the Hilbert transformation. The statistical parameters consist of mean, root mean squared, range, standard deviation, kurtosis, crest factor, energy, and skewness, while the Hilbert transformation consists of instantaneous frequency and amplitude. The feature extraction results from both parameters were combined into a set of PQ disturbances and classified using Multi-Layer Feedforward Neural Networks (MLFNN). Training and testing were carried out on 3 feature datasets, namely statistical parameters, Hilbert transforms, and a combination of both as inputs from 3 different MLFNN architectures. The best results were obtained from the combined feature input on the network architecture with 2 layers of ten neurons, by 98.4 %, 97.75, and 97.4 % for precision, recall, and overall accuracy, respectively. The implemented method is used to classify PQ signals reliably for pure sinusoids, harmonics with sag and swell, as well as flicker with 100 % precisio
ANCANG BANGUN PEMBANGKIT LISTRIK TENAGA MICROHYDRO PORTABLE MENGGUNAKAN ARCHIMEDES SCREW
Pembangkit Listrik Tenaga Mikrohidro (PLTMH) merupakan pembangkit listrik tenaga air berskala kecil (< 100 kW) yang memiliki banyak keunggulan, terutama tanpa menggunakan waduk, ramah lingkungan, dan merupakan energi terbarukan, sehingga banyak dibangun untuk keperluan pembangkit listrik didaerah pedesaan. PLTMH umumnya merupakan pembangkit permanen, sehingga permasalahan utama yang dihadapi biaya konstruksi pembangunan relatif mahal. Prototipe Pembangkit Listrik Tenaga Micro Hydro Portable menggunakan turbin archimedes screw merupakan pembangkit listrik yang mampu bekerja pada debit air berskala kecil berbentuk balok dengan panjang 73 cm, lebar 25 cm, kemiringan rumah turbin 45o dan berat total 10 Kg menjadikanya PLTMH portable. Prototipe PLTMHP berkeja pada debit aliran air 0,1 - 1,1 m3/detik menggunakan turbin archimedes screw yang dapat berkerja pada head rendah <2 meter. Tenaga dari turbin archimedes screw disalurkan ke generator menggunakan ratio 3:1, dimana satu putaran turbin menghasilkan tiga kali putaran generator menghasilkan tegangan rata-rata 9,3 V AC, kemudian tegangan di konversi rangkaian penyerahan, charger controller, baterai dan step up DC-DC untuk beban 12 V, kapasitas daya yang terbangkitkan 12 Watt 1 A
Sistem Kontrol Governor Menggunakan Pid Yang Dioptimasi Dengan Metode Cuckoo Search Algorithm (Csa) (Governor Control System Using Pid Optimized With the Cuckoo Search Algorithm (Csa)
Indonesia has enormous potential for the Hydroelectric Power Plant (PLTA). Considering that PLTA is an environmentallyfriendly power plant, the components of this plant are worthy of further development. One of them is the development of the hydropower governoor control system. The PID controller is a control system that is often used in the control of theGovernoor System in a hydropower plant because of its simple controller. At present hydro power plants still use theconventional method of PID control trial-error on average. For this method it is difficult to adjust parameters and it takes a long time and the accuracy of controls is not good. Therefore a smart method is needed to overcome this problem.In the past few years, researchers have used many intelligent methods (Artificial Intelligent) to determine the DC PIDparameters. One of them is Cucckoo Search Algorithm (CSA) which is inspired by the behavior of cuckoo birds in placingtheir eggs. By using the CSA method, it is expected to provide a better system response than using the old system PIDcontrol (trial-error). The final goal of the PID control system used in the hydro generator is to regulate the movement ofthe turbine guide vane, which will affect the electrical power produced by the generator. Here the Guide Vane blade settingscan be likened to adjusting the angle of a DC motor. In this study a miniature prototype system governor will be createdthat is controlled by using a PID controller optimized using the Cuckoo Search Algorithm method. In experiments withthe trial error method, the Kp = 3, Ki = 1 and Kd = 10 values with the magnitude of the control parameters obtainedthe average settling time for set point 4 to set point 8 of 24.2 second. Furthermore, the CSA method is used for tuning the PID. After being tuned to the CSA method the values of Kp, Ki and Kd are different for each set point. For set point 4,Kp = 0.99, Ki = 1.00 and Kd = 0.99, while the average settling time is also better than PID trial error, which is 18.8 second
Rancang Bangun Detektor Standart Preform Botol Minuman Menggunakan Metode Jaringan Saraf Tiruan (Design Of Standart Detector Standart Drink Bottle Using Artificial Neural Network Method)
Preform is a semi-finished material from a bottle before cooking in the blowing process. Standards form most, same shapes and colors in one production. However, it does not have to close in one production which requires several preforms that have different colors and weights than other preforms so that they are not included in the standard and must be rejected. In this case a standard detector and color of the preform drink bottle were made using backpropagation neural network method where hardware that loaded arduino uno, photodiode sensor, load cell and HX 711 module and LCD i2c 16 x 2. Photodiode sensors can be used in blue preform together with load cell which is translated directly preform which is directly converted by the HX711 module. Two input data is then processed in the Arduino UNO module. Data output from Arduino UNO is approved on the LCD and processed in the Artificial Neural Network in Matlab on the laptop. The final output of the research results will be displayed in the command window matlab column containing rich "YES" or "NO". In this study backpropagation artificial neural networks as a method to provide accurate assessment by displaying the test results with 19 grams, color density 8 with a voltage of 0.038 Volts and output data is 1 with error data -4.75E13
Kinerja Jaringan Komunikasi Nirkabel Berbasis Xbee pada Topologi Bus, Star dan Mesh
ABSTRAK
Jaringan sensor nirkabel merupakan perangkat komunikasi yang memiliki kesederhanaan pada prosesor, konsumsi daya rendah, antena dan beberepa detektor. Biaya yang rendah dan fleksibel sangat cocok digunakan untuk berbagai aplikasi monitoring di industri dan lingkungan baik indoor maupun outdoor. Salah satu perangkat transceiver yang banyak digunakan pada saat ini adalah Xbee. Perangkat ini dapat dikonfigurasi sebagai coordinator, router maupun end-device sesuai dengan topologi jaringan yang dibangun. Penelitian ini bertujuan untuk menganalisis kinerja Xbee dengan parameter RSSI, troughput dan delay dengan topologi bus, star, mesh dan hybrid pada indoor dan outdoor. Pengukuran dilakukan dalam rentang jarak 0-40 meter pada kondisi indoor dan 0-120 meter pada kondisi outdoor. Berdasarkan hasil pengujian pada indoor dan outdoor, nilai optimum diperoleh pada topologi mesh dengan delay dan packet loss terkecil sebesar 2,7 detik dan 0,5 paket untuk indoor serta 3,41 detik dan 0,33 paket untuk outdoor.
Kata kunci: jaringan sensor nirkabel, xbee, topologi bus, star dan mesh
ABSTRACT
Wireless sensor networks are communication devices that have simplicity in the processor, low power consumption, antennas and some detectors. Low and flexible costs are suitable for various monitoring applications in the industry and environment both indoors and outdoors. One of the transceiver devices that is widely used today is Xbee. This device can be configured as a coordinator, router or end-device in accordance with the network topology that is built. This study aims to analyze the performance of Xbee with RSSI parameters, throughput and delay with bus, star, mesh and hybrid topologies in indoor and outdoor. Measurements are carried out in the range of 0-40 meters in indoor conditions and 0-120 meters in outdoor conditions. Based on the results of testing on indoor and outdoor, the optimum value was obtained in mesh topology with the smallest delay and packet loss of 2.7 seconds and 0.5 packets for indoor and 3.41 seconds and 0.33 packets for outdoor.
Keywords: wireless sensor network, xbee, bus, star and mesh network topolog
Software untuk Penentuan Lokasi Gangguan Jaringan Distribusi dengan Metode Takagi
Pada operasi sistem tenaga listrik dapat terjadi gangguan internal yaitu berasal dari sistem dan gangguan eksternal yaitu sambaran petir saat badai, hewan, atau pohon tumbang yang mengakibatkan terganggunya penyaluran tenaga listrik ke konsumen. Pada sistem kelistrikan pendeteksian lokasi gangguan secara cepat akan membantu melindungi peralatan, menjaga sistem tetap stabil dan meminimalkan kerusakan jaringan serta kerugian ekonomis. Metode simple reactance atau Metode berbasis impedansi menggunakan nilai dari fasor tegangan dan arus dari transduser seperti rele numerik dan perekam gangguan. Dengan teknik ini, fasor tegangan dan arus dapat diperoleh dari satu atau dua sumber di saluran distribusi. SedangkanMetode Takagi membutuhkan data sebelum gangguan untuk perhitungannya.Kunci keberhasilan dari metode Takagi ini adalah bahwa sudut Is sama dengan sudut If. Untuk sistem yang homogen yang ideal, sudut-sudut ini indentik. Maka dari itu dalam pembuatan skripsi ini memilih menggunakan Metode Takagi. Setelah melakukan analisis, maka dapat disimpulkan dengan menggunakan Metode Takagi mendapatkan nilai error rata-rata 0,003 % dibandingkan dengan menggunakan Metode Impedansi yang mendapatkan nilai error rata-rata 0,0142 %
Optimasi Penempatan Menara BTS Menggunakan Quantum-Behaved Particle Swarm Optimization
Universal Mobile Telecommunications System ( UMTS ) is currently regarded as a dream system that replaces the Global System for Mobile Communication ( GSM ) and is one of the evolution of third generation ( 3G ) of mobile networks . One componentof UMTS network is Node B , Node B can be analogous to the BaseTransceiver Station. Along with the increasing customer need , there need for increasing number of Node B and that can divided the visualize of the city and need optimization of tower placement .Quantum - behaved Particle Swarm Optimization . So in this research be designed simulation optimization placement of base stations using QPSO with parameters to be optimized is the Coverage Area and Traffic .QPSO algorithm can reduce the number of base stations from 55 to 43 BTS.Keyword : UMTS900, Base Tranceiver Station, QPSOAbstrak-Universal Mobile Telecomunication System (UMTS) saat ini dipandang sebagai sebuah sistem impian yang menggantikan Global System for Mobile Communication (GSM) dan merupakan salah satu evolusi generasi ketiga (3G) dari jaringan mobile. Salah satu komponen pendukung jaringan UMTS adalah Node B, Node B dapat dianalogikan sebagai BTS. Seiring perkembangan kebutuhan pelanggan yang semakin meningkat, kebutuhan akan BTS(Node B) semakin bertambah, hal ini menyebabkan banyaknya jumlah menara BTS da menyebabkan pemandangan yang kurang bagus bagi visualisasi kota.oleh karena itu perlu dilakukan optimisasi penempatan menara BTS. Salah satu metode untuk mengoptimasi adalah Quantum-behaved Particle Swarm Optimization. Maka dalam penelitian ini akan dirancang simulasi optimasi penempatan BTS menggunakan QPSO dengan parameter yang akan dioptimasi adalah Coverage Area dan Trafik. Dari hasil penelitian yang dilakukan, Algoritma QPSO mampu mengurangi jumlah BTS dari 55 BTS menjadi 43 BTS.Kata Kunci : UMTS900, BTS, QPS
Prototype Sistem Deteksi Partial Discharge Pada Isolasi Kabel Menggunakan Sensor Microphone (Prototype Of Partial Discharge Detection System In Cable Isolation Using Microphone Sensor)
The phenomenon that often arises in a substation is the problem of partial discharge in outgoing cable insulation. Partial discharge is a jump of positive and negative ions that are not supposed to meet so that it can cause a spark jump. If a partial discharge is left too long it can cause insulation failure, the sound of snakes like hissing and the most can cause a flashover on the outgoing cable. Then a partial discharge detection prototype was made in the cable insulation in order to anticipate the isolation interference in the outgoing cable. Can simplify the work of substation operators to check the reliability of insulation on the outgoing side of each cubicle. So it was compiled as a method for measuring sound waves caused by partial discharge in the process of measuring using a microphone sensor, the Arduino Mega 2560 module as a microcontroller, the LCD TFT as a monitoring and the MicroSD card module as its storage. The microphone sensor is a sensor that has a high sensitivity to sound, has 2 analog and digital readings, and is easily designed with a microcontroller. Basically the unit of measure measured at partial discharge is Decibels. The results of the prototype can be applied to the cubicle and the way it works is to match the prototype to the outgoing cubicle cable then measure from the cable boots connector to the bottom of the outgoing cable with a distance of 1 meter. Then the measurement results will be monitored on the TFT LCD screen in the form of measurement results, graphs and categories on partial discharge. In this design the measurement data made by the microphone can be stored with microSD so that it can make an evaluation of partial discharge handling in outgoing cable insulation