48 research outputs found

    In Situ Formation of the TiCN Phase in SiBCN Ceramic Aerogels Enabling Superior Thermal and Structural Stability up to 1800 °C

    No full text
    Ceramic aerogels show excellent thermal insulation and functional performance for their unique nanoporous structure. However, conventional ceramic aerogels often undergo structural collapse and performance deterioration in high-temperature environments due to sintering, crystallization, and/or phase transition. Here, we designed a TiCN/SiBCN ceramic aerogel in which the TiCN phase was in situ formed through a carbothermal reaction during pyrolysis. Benefiting from its unique pearl-necklace-like structure, the TiCN/SiBCN aerogel exhibits a high specific surface area (248 m2/g), a low thermal conductivity (0.08 W/m·K), and a considerable compressive strength (2.2 MPa). The formation of a stable TiCN phase endows the aerogel with significant resistance to thermal decomposition and crystallization up to 1800 °C. Moreover, the TiCN/SiBCN aerogel retains high surface area and low thermal conductivity after thermal treatment, indicative of the stability and reliability of the nanoporous structure. The TiCN/SiBCN ceramic aerogel with superior thermal and structural stability is an ideal candidate for structural and functional applications in high-temperature environments

    Table_4_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.DOCX

    No full text
    At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Table_5_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.DOCX

    No full text
    <p>At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Table_7_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.DOCX

    No full text
    <p>At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Image_3_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.PDF

    No full text
    <p>At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Table_2_Relationship between lipoprotein(a) and colorectal cancer among inpatients: a retrospective study.docx

    No full text
    The present study was to explore the association between lipoprotein(a) [Lp(a)] and colorectal cancer (CRC) among inpatients. This study included 2822 participants (393 cases vs. 2429 controls) between April 2015 and June 2022. Logistic regression models, smooth curve fitting, and sensitivity analyses were performed to investigate the relationship between Lp(a) and CRC. Compared with the lower Lp(a) quantile 1 (<79.6 mg/L), the adjusted odds ratios (ORs) in quantile 2 (79.6-145.0 mg/L), quantile 3 (146.0-299.0 mg/L), and quantile 4 (≥300.0 mg/L) were 1.41 (95% confidence interval [CI]: 0.95–2.09), 1.54 (95% CI: 1.04–2.27), 1.84 (95% CI: 1.25–2.7), respectively. A linear relationship between lipoprotein(a) and CRC was observed. The finding that Lp(a) has a positive association with CRC supports the “common soil” hypothesis of cardiovascular disease (CVD) and CRC.</p

    Table_1_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.DOCX

    No full text
    <p>At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Image_2_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.PDF

    No full text
    At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p

    Quasi Optical Cavity of Hierarchical ZnO Nanosheets@Ag Nanoravines with Synergy of Near- and Far-Field Effects for in Situ Raman Detection

    No full text
    The vertically interlaced hierarchical structure (HS) of ZnO nanosheets (NSs)@Ag nanoravines (NRs) as a quasi optical cavity (QOC) for Raman enhancement has been studied experimentally and theoretically in this work. A novel synergism of near- and far-field effects of Ag NRs is facilitated by the multiple oscillation of light inside the ZnO QOC, providing wide distributions of “hot spots” in a large space. The “spatial hot spots” in the HS bring reliable signal collection in in situ Raman detection. Without any specific materials and methods adopted, this HS provides researchers a new way to adjust the light in the fields of Raman enhancement

    Table_3_Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients.DOCX

    No full text
    <p>At least 12% of human cancers are caused by virus infection. To understand whether other viruses are associated with human cancers, a viral metagenomics approach was used to analyze the composition of the viral communities of the serum of the patients with Hodgkin’s lymphoma (HL) and non-Hodgkin lymphoma. In this report, a human anellovirus TTMV named TTMV-SH was discovered from three patients with HL. The complete genome of TTMV-SH is 2812nt in length. Phylogenetic analysis based on ORF1 indicated that TTMV-SH of the 11 isolates cluster with TTMV strain TLMV-CBD231 sharing only 60.3–62% sequence similarity, and the sequences divergence is 41.5–43.1%, which indicates that TTMV-SH is a novel species. The TTMV-SH prevalence in HL group, especially in nodular sclerosing Hodgkin’s lymphomas (NSHL), was significantly higher than in the healthy group implicated that the TTMV-SH may be associated with HL, especially NSHL.</p
    corecore