91 research outputs found

    Genomic abundance is not predictive of tandem repeat localization in grass genomes.

    Get PDF
    Highly repetitive regions have historically posed a challenge when investigating sequence variation and content. High-throughput sequencing has enabled researchers to use whole-genome shotgun sequencing to estimate the abundance of repetitive sequence, and these methodologies have been recently applied to centromeres. Previous research has investigated variation in centromere repeats across eukaryotes, positing that the highest abundance tandem repeat in a genome is often the centromeric repeat. To test this assumption, we used shotgun sequencing and a bioinformatic pipeline to identify common tandem repeats across a number of grass species. We find that de novo assembly and subsequent abundance ranking of repeats can successfully identify tandem repeats with homology to known tandem repeats. Fluorescent in-situ hybridization shows that de novo assembly and ranking of repeats from non-model taxa identifies chromosome domains rich in tandem repeats both near pericentromeres and elsewhere in the genome

    Natural variation in teosinte at the domestication locus teosinte branched1 (tb1)

    Get PDF
    The teosinte branched1(tb1) gene is a major QTL controlling branching differences between maize and its wild progenitor, teosinte. The insertion of a transposable element (Hopscotch) upstream of tb1 is known to enhance the gene’s expression, causing reduced tillering in maize. Observations of the maize tb1 allele in teosinte and estimates of an insertion age of theHopscotch that predates domestication led us to investigate its prevalence and potential role in teosinte. We assessed the prevalence of the Hopscotchelement across an Americas-wide sample of 837 maize and teosinte individuals using a co-dominant PCR assay. Additionally, we calculated population genetic summaries using sequence data from a subset of individuals from four teosinte populations and collected phenotypic data using seed from a single teosinte population where Hopscotch was found segregating at high frequency. Genotyping results indicate the Hopscotchelement is found in a number of teosinte populations and linkage disequilibrium near tb1 does not support recent introgression from maize. Population genetic signatures are consistent with selection on the tb1 locus, revealing a potential ecological role, but a greenhouse experiment does not detect a strong association between the Hopscotch and tillering in teosinte. Our findings suggest the role of Hopscotch differs between maize and teosinte. Future work should assess tb1 expression levels in teosinte with and without the Hopscotch and more comprehensively phenotype teosinte to assess the ecological significance of the Hopscotch insertion and, more broadly, the tb1 locus in teosinte

    Unraveling Prevalence and Effects of Deleterious Mutations in Maize Elite Lines across Decades of Modern Breeding

    Get PDF
    Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts

    Complex patterns of local adaptation in teosinte

    Get PDF
    Populations of widely distributed species often encounter and adapt to specific environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and a good understanding of population structure. We have used environmental and high-density genotype data to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found that altitude, dispersal events and admixture among subspecies formed a complex hierarchical genetic structure within teosinte. Patterns of linkage disequilibrium revealed four mega-base scale inversions that segregated among populations and had altitudinal clines. Based on patterns of differentiation and correlation with environmental variation, inversions and nongenic regions play an important role in local adaptation of teosinte. Further, we note that strongly differentiated individual populations can bias the identification of adaptive loci. The role of inversions in local adaptation has been predicted by theory and requires attention as genome-wide data become available for additional plant species. These results also suggest a potentially important role for noncoding variation, especially in large plant genomes in which the gene space represents a fraction of the entire genome

    Characterization of introgression from the teosinte Zea mays ssp. mexicana to Mexican highland maize

    Get PDF
    Background The spread of maize cultivation to the highlands of central Mexico was accompanied by substantial introgression from the endemic wild teosinte Zea mays ssp. mexicana, prompting the hypothesis that the transfer of beneficial variation facilitated local adaptation. Methods We used whole-genome sequence data to map regions of Zea mays ssp. mexicana introgression in three Mexican highland maize individuals. We generated a genetic linkage map and performed Quantitative Trait Locus mapping in an F2 population derived from a cross between lowland and highland maize individuals. Results Introgression regions ranged in size from several hundred base pairs to Megabase-scale events. Gene density within introgression regions was comparable to the genome as a whole, and over 1,000 annotated genes were located within introgression events. Quantitative Trait Locus mapping identified a small number of loci linked to traits characteristic of Mexican highland maize. Discussion Although there was no strong evidence to associate quantitative trait loci with regions of introgression, we nonetheless identified many Mexican highland alleles of introgressed origin that carry potentially functional sequence variants. The impact of introgression on stress tolerance and yield in the highland environment remains to be fully characterized

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians

    Get PDF
    The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects

    A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes

    Get PDF
    BACKGROUND: Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. RESULTS: A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. CONCLUSIONS: Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets
    corecore