283 research outputs found
Theory of a cavity around a large floating sphere in complex (dusty) plasma
In the last experiment with the PK-3 Plus laboratory onboard the
International Space Station, interactions of millimeter-size metallic spheres
with a complex plasma were studied~[M. Schwabe {\it et al.}, New J. Phys. {\bf
19}, 103019 (2017)]. Among the phenomena observed was the formation of cavities
(regions free of microparticles forming a complex plasma) surrounding the
spheres. The size of the cavity is governed by the balance of forces
experienced by the microparticles at the cavity edge. In this article we
develop a detailed theoretical model describing the cavity size and demonstrate
that it agrees well with sizes measured experimentally. The model is based on a
simple practical expression for the ion drag force, which is constructed to
take into account simultaneously the effects of non-linear ion-particle
coupling and ion-neutral collisions. The developed model can be useful for
describing interactions between a massive body and surrounding complex plasma
in a rather wide parameter regime.Comment: 9 pages, 4 figures; to be published (2019
Channeling of particles and associated anomalous transport in a 2D complex plasma crystal
Implications of recently discovered effect of channeling of upstream extra
particles for transport phenomena in a two-dimensional plasma crystal are
discussed. Upstream particles levitated above the lattice layer and tended to
move between the rows of lattice particles. An example of heat transport is
considered, where upstream particles act as moving heat sources, which may lead
to anomalous heat transport. The average channeling length observed was 15 - 20
interparticle distances. New features of the channeling process are also
reported
Thermodynamics of Yukawa fluids near the one-component-plasma limit
Thermodynamics of weakly screened (near the one-component-plasma limit)
Yukawa fluids in two and three dimensions is analyzed in detail. It is shown
that the thermal component of the excess internal energy of these fluids, when
expressed in terms of the properly normalized coupling strength, exhibits the
scaling pertinent to the corresponding one-component-plasma limit (the scalings
differ considerably between the two- and three-dimensional situations). This
provides us with a simple and accurate practical tool to estimate thermodynamic
properties of weakly screened Yukawa fluids. Particular attention is paid to
the two-dimensional fluids, for which several important thermodynamic
quantities are calculated to illustrate the application of the approach.Comment: Submitted to Phys. Plasma
Wake-mediated propulsion of an upstream particle in two-dimensional plasma crystals
The wake-mediated propulsion of an "extra" particle in a channel of two
neighboring rows of a two-dimensional plasma crystal, observed experimentally
by Du et al. [Phys. Rev. E 89, 021101(R) (2014)], is explained in simulations
and theory. We use the simple model of a pointlike ion wake charge to reproduce
this intriguing effect in simulations, allowing for a detailed investigation
and a deeper understanding of the underlying dynamics. We show that the
nonreciprocity of the particle interaction, owing to the wake charges, is
responsible for a broken symmetry of the channel that enables a persistent
self-propelled motion of the extra particle. We find good agreement of the
terminal extra-particle velocity with our theoretical considerations and with
experiments.Comment: 7 pages, 4 figures, PRL (https://journals.aps.org/prl/), updated
version with correct author affiliation
Nonlinear structures of strongly coupled complex plasmas in the proximity of a presheath/sheath edge
The formation of a steady-state nonlinear potential structure of a double-layer type near the presheath/sheath edge of a plasma discharge is theoretically investigated in complex plasmas containing Boltzmann electrons, cold fluid ions and strongly coupled microparticles. Equilibrium of the particles is provided by the electrostatic force and an effective 'dust pressure' associated with electrostatic interactions between the highly charged grains. The results are of importance for complex plasma experiments in microgravity conditions, for thermophoretically levitated configurations and for processing plasmas loaded by nanometer-sized microparticles
Network analysis of 3D complex plasma clusters in a rotating electric field
Network analysis was used to study the structure and time evolution of driven
three-dimensional complex plasma clusters. The clusters were created by
suspending micron-size particles in a glass box placed on top of the rf
electrode in a capacitively coupled discharge. The particles were highly
charged and manipulated by an external electric field that had a constant
magnitude and uniformly rotated in the horizontal plane. Depending on the
frequency of the applied electric field, the clusters rotated in the direction
of the electric field or remained stationary. The positions of all particles
were measured using stereoscopic digital in-line holography. The network
analysis revealed the interplay between two competing symmetries in the
cluster. The rotating cluster was shown to be more cylindrical than the
nonrotating cluster. The emergence of vertical strings of particles was also
confirmed.Comment: 9 pages, 9 figures; corrected Fig.4 and typo
Penetration of a supersonic particle at the interface in a binary complex plasma
The penetration of a supersonic particle at the interface was studied in a
binary complex plasma. Inspired by the experiments performed in the PK-3 Plus
Laboratory on board the International Space Station, Langevin dynamics
simulations were carried out. The evolution of Mach cone at the interface was
observed, where a kink of the lateral wake front was observed at the interface.
By comparing the evolution of axial and radial velocity, we show that the
interface solitary wave is non-linear. The dependence of the background
particle dynamics in the vicinity of the interface on the penetration direction
reveals that the disparity of the mobility may be the cause of various
interface effects
Practical thermodynamics of Yukawa systems at strong coupling
Simple practical approach to estimate thermodynamic properties of strongly
coupled Yukawa systems, in both fluid and solid phases, is presented. The
accuracy of the approach is tested by extensive comparison with direct computer
simulation results (for fluids and solids) and the recently proposed
shortest-graph method (for solids). Possible applications to other systems of
softly repulsive particles are briefly discussed.Comment: Published in J. Chem. Phy
Physical realization of a quantum spin liquid based on a novel frustration mechanism
Unlike conventional magnets where the magnetic moments are partially or
completely static in the ground state, in a quantum spin liquid they remain in
collective motion down to the lowest temperatures. The importance of this state
is that it is coherent and highly entangled without breaking local symmetries.
Such phenomena is usually sought in simple lattices where antiferromagnetic
interactions and/or anisotropies that favor specific alignments of the magnetic
moments are "frustrated" by lattice geometries incompatible with such order
e.g. triangular structures. Despite an extensive search among such compounds,
experimental realizations remain very few. Here we describe the investigation
of a novel, unexplored magnetic system consisting of strong ferromagnetic and
weaker antiferromagnetic isotropic interactions as realized by the compound
CaCrO. Despite its exotic structure we show both
experimentally and theoretically that it displays all the features expected of
a quantum spin liquid including coherent spin dynamics in the ground state and
the complete absence of static magnetism.Comment: Modified version accepted in Nature Physic
- …