17,312 research outputs found

    Airframe-integrated propulsion system for hypersonic cruise vehicles

    Get PDF
    Research on a new, hydrogen burning, airbreathing engine concept which offers good potential for efficient hypersonic cruise vehicles is considered. Features of the engine which lead to good performance include; extensive engine-airframe integration, fixed geometry, low cooling, and the control of heat release in the supersonic combustor by mixed-modes of fuel injection from the combustor entrance. The engine concept is described along with results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines presently underway at conditions which simulate flight at Mach 4 and 7

    How sensitive is a neutrino factory to the angle θ13\theta_{13}?

    Full text link
    We consider the impact of non-standard interactions of neutrinos (NSI) on the determination of neutrino mixing parameters at a neutrino factory using \pnu{e}\to\pnu{\mu} ``golden channels'' for the measurement of θ13\theta_{13}. We show how a small residual NSI leads to a drastic loss in sensitivity in θ13\theta_{13}, of up to two orders of magnitude. This can be somewhat overcome if two baselines are combined.Comment: 4 pages, 3 figure

    Combined potential of future long-baseline and reactor experiments

    Full text link
    We investigate the determination of neutrino oscillation parameters by experiments within the next ten years. The potential of conventional beam experiments (MINOS, ICARUS, OPERA), superbeam experiments (T2K, NOvA), and reactor experiments (D-CHOOZ) to improve the precision on the ``atmospheric'' parameters Δm312\Delta m^2_{31}, θ23\theta_{23}, as well as the sensitivity to θ13\theta_{13} are discussed. Further, we comment on the possibility to determine the leptonic CP-phase and the neutrino mass hierarchy if θ13\theta_{13} turns out to be large.Comment: 4 pages, 4 figures, Talk given by T.S. at the NOW2004 workshop, Conca Specchiulla (Otranto, Italy), 11--17 Sept. 200

    Optimization of a neutrino factory oscillation experiment

    Get PDF
    We discuss the optimization of a neutrino factory experiment for neutrino oscillation physics in terms of muon energy, baselines, and oscillation channels (gold, silver, platinum). In addition, we study the impact and requirements for detector technology improvements, and we compare the results to beta beams. We find that the optimized neutrino factory has two baselines, one at about 3000 to 5000km, the other at about 7500km (``magic'' baseline). The threshold and energy resolution of the golden channel detector have the most promising optimization potential. This, in turn, could be used to lower the muon energy from about 50GeV to about 20GeV. Furthermore, the inclusion of electron neutrino appearance with charge identification (platinum channel) could help for large values of \sin^2 2 \theta_{13}. Though tau neutrino appearance with charge identification (silver channel) helps, in principle, to resolve degeneracies for intermediate \sin^2 2 \theta_{13}, we find that alternative strategies may be more feasible in this parameter range. As far as matter density uncertainties are concerned, we demonstrate that their impact can be reduced by the combination of different baselines and channels. Finally, in comparison to beta beams and other alternative technologies, we clearly can establish a superior performance for a neutrino factory in the case \sin^2 2 \theta_{13} < 0.01.Comment: 51 pages, 25 figures, 6 tables, references corrected, final version to appear in Phys. Rev.

    Which long-baseline neutrino experiments are preferable?

    Full text link
    We discuss the physics of superbeam upgrades, where we focus on T2KK, a NuMI beam line based experiment NOvA*, and a wide band beam (WBB) experiment independent of the NuMI beam line. For T2KK, we find that the Japan-Korea baseline helps resolve parameter degeneracies, but the improvement due to correlated systematics between the two detectors (using identical detectors) is only moderate. For an upgrade of NOvA with a liquid argon detector, we demonstrate that the Ash River site is preferred compared to alternatives, such as at the second oscillation maximum, and is the optimal site within the U.S. For a WBB experiment, we find that high proton energies and long decay tunnels are preferable. We compare water Cherenkov and liquid argon technologies, and find the break-even point in detector cost at about 4:1. In order to compare the physics potential of the different experimental configurations, we use the concept of exposure to normalize the performance. We find that experiments with WBBs are the best experimental concept. NOvA* could be competitive with sufficient luminosity. If sin22θ13\sin^2 2\theta_{13} > 0.01, a WBB experiment can perform better than a neutrino factory.Comment: 31 pages, 13 figures, 5 tables. Version to appear in PR

    Criteria for self-ignition of supersonic hydrogen-air mixtures

    Get PDF
    A correlation of available self ignition data for supersonic hydrogen-air mixtures in configurations representative of scramjet combustors was made. The correlation was examined in light of simplified ignition-limit models. The data and model included cases of injection from transverse fuel jets on walls, transverse jets behind swept and unswept steps, and transverse injection ahead of swept and unswept steps and strut bases. The results provide useful guidance for predicting self ignition in a variety of applications. The likely regions for self ignition in a combustor are given in order of merit

    Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

    Full text link
    The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization.Comment: 7 pages, 5 figure

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Molecular effects in the ionization of N2_2, O2_2 and F2_2 by intense laser fields

    Full text link
    In this paper we study the response in time of N2_2, O2_2 and F2_2 to laser pulses having a wavelength of 390nm. We find single ionization suppression in O2_2 and its absence in F2_2, in accordance with experimental results at λ=800\lambda = 800nm. Within our framework of time-dependent density functional theory we are able to explain deviations from the predictions of Intense-Field Many-Body SS-Matrix Theory (IMST). We confirm the connection of ionization suppression with destructive interference of outgoing electron waves from the ionized electron orbital. However, the prediction of ionization suppression, justified within the IMST approach through the symmetry of the highest occupied molecular orbital (HOMO), is not reliable since it turns out that, e.g. in the case of F2_2, the electronic response to the laser pulse is rather complicated and does not lead to dominant depletion of the HOMO. Therefore, the symmetry of the HOMO is not sufficient to predict ionization suppression. However, at least for F2_2, the symmetry of the dominantly ionized orbital is consistent with the non-suppression of ionization.Comment: 19 pages, 5 figure
    corecore