535 research outputs found
3D-Printing for Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a classical technique of physical
biochemistry providing information on size, shape, and interactions of
macromolecules from the analysis of their migration in centrifugal fields while
free in solution. A key mechanical element in AUC is the centerpiece, a
component of the sample cell assembly that is mounted between the optical
windows to allow imaging and to seal the sample solution column against high
vacuum while exposed to gravitational forces in excess of 300,000 g. For
sedimentation velocity it needs to be precisely sector-shaped to allow
unimpeded radial macromolecular migration. During the history of AUC a great
variety of centerpiece designs have been developed for different types of
experiments. Here, we report that centerpieces can now be readily fabricated by
3D printing at low cost, from a variety of materials, and with customized
designs. The new centerpieces can exhibit sufficient mechanical stability to
withstand the gravitational forces at the highest rotor speeds and be
sufficiently precise for sedimentation equilibrium and sedimentation velocity
experiments. Sedimentation velocity experiments with bovine serum albumin as a
reference molecule in 3D printed centerpieces with standard double-sector
design result in sedimentation boundaries virtually indistinguishable from
those in commercial double-sector epoxy centerpieces, with sedimentation
coefficients well within the range of published values. The statistical error
of the measurement is slightly above that obtained with commercial epoxy, but
still below 1%. Facilitated by modern open-source design and fabrication
paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a
variety of improvements in AUC experimental design, efficiency and resource
allocation.Comment: 25 pages, 6 figure
Surface plasmon polaritons assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling
Metal films grown on Si wafer perforated with a periodic array of
subwavelength holes have been fabricated and anomalous enhanced transmission in
the mid-infrared regime has been observed. High order transmission peaks up to
Si(2,2) are clearly revealed due to the large dielectric constant contrast of
the dielectrics at the opposite interfaces. Si(1,1) peak splits at oblique
incidence both in TE and TM polarization, which confirms that anomalous
enhanced transmission is a surface plasmon polaritons (SPPs) assisted
diffraction phenomenon. Theoretical transmission spectra agree excellently with
the experimental results and confirm the role of SPPs diffraction by the
lattice.Comment: 4 pages, 5 figures, 26 reference
Risk assessment of safety level in university laboratories using questionnaire and Bayesian network
Assembly, Loading, and Alignment of an Analytical Ultracentrifuge Sample Cell
The analytical ultracentrifuge (AUC) is a powerful biophysical tool that allows us to record macromolecular sedimentation profiles during high speed centrifugation. When properly planned and executed, an AUC sedimentation velocity or sedimentation equilibrium experiment can reveal a great deal about a protein in regards to size and shape, sample purity, sedimentation coefficient, oligomerization states and protein-protein interactions
- …
