133 research outputs found

    Comparison of V-Net and MIS-Net CT liver segmentation details.

    No full text
    Comparison of V-Net and MIS-Net CT liver segmentation details.</p

    Comparison of right and left lung segmentation results.

    No full text
    Comparison of right and left lung segmentation results.</p

    CT sections, liver labels and post-overlap effects in the LiTS dataset.

    No full text
    CT sections, liver labels and post-overlap effects in the LiTS dataset.</p

    Comparison of V-Net and MIS-Net CT lung segmentation details.

    No full text
    Comparison of V-Net and MIS-Net CT lung segmentation details.</p

    Comparison of liver segmentation results.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div

    VNet loss VS MIS-Net loss.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div

    MIS-Net decoding module structure.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div

    Ablation experiments in LiTS17 datasets.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div

    MIS-Net encdoing module structure.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div

    3D ASPP module structure.

    No full text
    The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.</div
    corecore