194 research outputs found

    Linear Information Coupling Problems

    Get PDF
    Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. Moreover, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will also present the application of this approach to the point-to-point channel and the general broadcast channel, which demonstrates how our technique simplifies information theory problems.Comment: To appear, IEEE International Symposium on Information Theory, July, 201

    The Linear Information Coupling Problems

    Full text link
    Many network information theory problems face the similar difficulty of single-letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channel, general broadcast channel, and the multiple access channel (MAC) with the common source. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Moreover, we show that for the general broadcast channel, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. Finally, for the MAC with the common source, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be quantified by applying our technique.Comment: 27 pages, submitted to IEEE Transactions on Information Theor

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201

    On the expected number of facets for the convex hull of samples

    Full text link
    This paper studies the convex hull of dd-dimensional samples i.i.d. generated from spherically symmetric distributions. Specifically, we derive a complete integration formula for the expected facet number of the convex hull. This formula is with respect to the CDF of the radial distribution. As the number of samples approaches infinity, the integration formula enables us to obtain the asymptotic value of the expected facet number for three categories of spherically symmetric distributions. Additionally, the asymptotic result can be applied to estimating the sample complexity in order that the probability measure of the convex hull tends to one
    • …
    corecore