148 research outputs found
Scalable Semidefinite Relaxation for Maximum A Posterior Estimation
Maximum a posteriori (MAP) inference over discrete Markov random fields is a
fundamental task spanning a wide spectrum of real-world applications, which is
known to be NP-hard for general graphs. In this paper, we propose a novel
semidefinite relaxation formulation (referred to as SDR) to estimate the MAP
assignment. Algorithmically, we develop an accelerated variant of the
alternating direction method of multipliers (referred to as SDPAD-LR) that can
effectively exploit the special structure of the new relaxation. Encouragingly,
the proposed procedure allows solving SDR for large-scale problems, e.g.,
problems on a grid graph comprising hundreds of thousands of variables with
multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable
of attaining comparable accuracy while exhibiting remarkably improved
scalability, in contrast to the commonly held belief that semidefinite
relaxation can only been applied on small-scale MRF problems. We have evaluated
the performance of SDR on various benchmark datasets including OPENGM2 and PIC
in terms of both the quality of the solutions and computation time.
Experimental results demonstrate that for a broad class of problems, SDPAD-LR
outperforms state-of-the-art algorithms in producing better MAP assignment in
an efficient manner.Comment: accepted to International Conference on Machine Learning (ICML 2014
SurfNet: Generating 3D shape surfaces using deep residual networks
3D shape models are naturally parameterized using vertices and faces, \ie,
composed of polygons forming a surface. However, current 3D learning paradigms
for predictive and generative tasks using convolutional neural networks focus
on a voxelized representation of the object. Lifting convolution operators from
the traditional 2D to 3D results in high computational overhead with little
additional benefit as most of the geometry information is contained on the
surface boundary. Here we study the problem of directly generating the 3D shape
surface of rigid and non-rigid shapes using deep convolutional neural networks.
We develop a procedure to create consistent `geometry images' representing the
shape surface of a category of 3D objects. We then use this consistent
representation for category-specific shape surface generation from a parametric
representation or an image by developing novel extensions of deep residual
networks for the task of geometry image generation. Our experiments indicate
that our network learns a meaningful representation of shape surfaces allowing
it to interpolate between shape orientations and poses, invent new shape
surfaces and reconstruct 3D shape surfaces from previously unseen images.Comment: CVPR 2017 pape
Data-Driven Shape Analysis and Processing
Data-driven methods play an increasingly important role in discovering
geometric, structural, and semantic relationships between 3D shapes in
collections, and applying this analysis to support intelligent modeling,
editing, and visualization of geometric data. In contrast to traditional
approaches, a key feature of data-driven approaches is that they aggregate
information from a collection of shapes to improve the analysis and processing
of individual shapes. In addition, they are able to learn models that reason
about properties and relationships of shapes without relying on hard-coded
rules or explicitly programmed instructions. We provide an overview of the main
concepts and components of these techniques, and discuss their application to
shape classification, segmentation, matching, reconstruction, modeling and
exploration, as well as scene analysis and synthesis, through reviewing the
literature and relating the existing works with both qualitative and numerical
comparisons. We conclude our report with ideas that can inspire future research
in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
Jigsaw: Learning to Assemble Multiple Fractured Objects
Automated assembly of 3D fractures is essential in orthopedics, archaeology,
and our daily life. This paper presents Jigsaw, a novel framework for
assembling physically broken 3D objects from multiple pieces. Our approach
leverages hierarchical features of global and local geometry to match and align
the fracture surfaces. Our framework consists of three components: (1) surface
segmentation to separate fracture and original parts, (2) multi-parts matching
to find correspondences among fracture surface points, and (3) robust global
alignment to recover the global poses of the pieces. We show how to jointly
learn segmentation and matching and seamlessly integrate feature matching and
rigidity constraints. We evaluate Jigsaw on the Breaking Bad dataset and
achieve superior performance compared to state-of-the-art methods. Our method
also generalizes well to diverse fracture modes, objects, and unseen instances.
To the best of our knowledge, this is the first learning-based method designed
specifically for 3D fracture assembly over multiple pieces.Comment: 17 pages, 9 figure
- …