317 research outputs found
From Common to Special: When Multi-Attribute Learning Meets Personalized Opinions
Visual attributes, which refer to human-labeled semantic annotations, have
gained increasing popularity in a wide range of real world applications.
Generally, the existing attribute learning methods fall into two categories:
one focuses on learning user-specific labels separately for different
attributes, while the other one focuses on learning crowd-sourced global labels
jointly for multiple attributes. However, both categories ignore the joint
effect of the two mentioned factors: the personal diversity with respect to the
global consensus; and the intrinsic correlation among multiple attributes. To
overcome this challenge, we propose a novel model to learn user-specific
predictors across multiple attributes. In our proposed model, the diversity of
personalized opinions and the intrinsic relationship among multiple attributes
are unified in a common-to-special manner. To this end, we adopt a
three-component decomposition. Specifically, our model integrates a common
cognition factor, an attribute-specific bias factor and a user-specific bias
factor. Meanwhile Lasso and group Lasso penalties are adopted to leverage
efficient feature selection. Furthermore, theoretical analysis is conducted to
show that our proposed method could reach reasonable performance. Eventually,
the empirical study carried out in this paper demonstrates the effectiveness of
our proposed method
HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation
Recently, crowdsourcing has emerged as an effective paradigm for
human-powered large scale problem solving in various domains. However, task
requester usually has a limited amount of budget, thus it is desirable to have
a policy to wisely allocate the budget to achieve better quality. In this
paper, we study the principle of information maximization for active sampling
strategies in the framework of HodgeRank, an approach based on Hodge
Decomposition of pairwise ranking data with multiple workers. The principle
exhibits two scenarios of active sampling: Fisher information maximization that
leads to unsupervised sampling based on a sequential maximization of graph
algebraic connectivity without considering labels; and Bayesian information
maximization that selects samples with the largest information gain from prior
to posterior, which gives a supervised sampling involving the labels collected.
Experiments show that the proposed methods boost the sampling efficiency as
compared to traditional sampling schemes and are thus valuable to practical
crowdsourcing experiments.Comment: Accepted by AAAI201
- …