3 research outputs found

    Supertough Polylactide Materials Prepared through In Situ Reactive Blending with PEG-Based Diacrylate Monomer

    No full text
    Supertough biocompatible and biodegradable polylactide materials were fabricated by applying a novel and facile method involving reactive blending of polylactide (PLA) and poly­(ethylene glycol) diacylate (PEGDA) monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra confirm that cross-linking reaction of acylate groups occurs in the melt blending process according to the free radical polymerization mechanism. The results from differential scanning calorimetry, phase contrast optical microscopy and transmission electron microscopy indicate that the in situ polymerization of PEGDA leads to a phase separated morphology with cross-linked PEGDA (CPEGDA) as the dispersed particle phase domains and PLA matrix as the continuous phase, which leads to increasing viscosity and elasticity with increasing CPEGDA content and a rheological percolation CPEGDA content of 15 wt %. Mechanical properties of the PLA materials are improved significantly, for example, exhibiting improvements by a factor of 20 in tensile toughness and a factor of 26 in notched Izod impact strength at the optimum CPEGDA content. The improvement of toughness in PLA/CPEGDA blends is ascribed to the jointly contributions of crazing and shear yielding during deformation. The toughening strategy in fabricating supertoughened PLA materials in this work is accomplished using biocompatible PEG-based polymer as the toughening modifier with no toxic radical initiators involved in the processing, which has a potential for biomedical applications

    Stereocomplex Crystallite-Assisted Shear-Induced Crystallization Kinetics at a High Temperature for Asymmetric Biodegradable PLLA/PDLA Blends

    No full text
    A series of asymmetric biodegradable poly­(l-lactide) (PLLA)/poly­(d-lactide) (PDLA) blends with low PDLA compositions was prepared using a solution blending method. The formation of stereocomplex (SC) crystallites in PLLA/PDLA blends was evidenced by differential scanning calorimetry (DSC), as indicated by the melting point of SC crystallites being about 50 °C higher than that of PLLA homocrystallites. Isothermal crystallization kinetics under shear conditions at the specific high temperature of 160 °C for the PLLA/PDLA blends was investigated using polarized optical microscopy (POM) and rheometry. It was found that the crystallization process of PLLA in the blends was greatly accelerated under shear conditions due to the existence of SC crystallites and the crystallization kinetics of PLLA was promoted with increasing shear rate or shear time. The crystalline morphology remained spherulitic with the spherulitic growth rates unaltered at the applied shear conditions, and the accelerated crystallization kinetics could be attributed to the significantly enhanced nucleation density, for which the extra number of activated nuclei was correlated to shear as a kinetic model to assess the effects of shear on isothermal crystallization kinetics of PLLA/PDLA blends containing SC crystallites. The discrete Maxwell relaxation time spectra at the applied isothermal crystallization temperature of 160 °C were used to obtain the reptation and Rouse times of PLLA chains with high molecular masses. Even though the PLLA chains might be orientated under the applied shear, the relaxation time of the blends was still too short to induce any orientated crystal nuclei

    Synthesis and Characterization of Nanostructured Copolymer-Grafted Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers toward Unique Morphology and Strongly Enhanced Mechanical Properties

    No full text
    Considering that multiwalled carbon nanotubes (MWCNTs) can be used as anisotropic and stiff nano-objects acting as minority physical cross-linking points dispersed in soft polymer grafting matrixes, a series of copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers (CTPEs), MWCNT-<i>graft</i>-poly­(<i>n</i>-butyl acrylate-<i>co</i>-methyl methacrylate) [MWCNT-<i>g</i>-P­(BA-<i>co</i>-MMA)], with minor MWCNT contents of 1.2–3.8 wt % was synthesized by the surface-initiated activators regenerated by electron transfer for atom-transfer radical polymerization (ARGET ATRP) method. Excellent dispersion of the MWCNTs in the CTPEs was demonstrated by SEM and TEM, and the thermal stability properties and glass transition temperatures of the CTPEs were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Mechanical property test results demonstrated that the CTPEs exhibit obviously enhanced mechanical properties, such as higher tensile strength and elastic recovery, as compared with their linear P­(BA-<i>co</i>-MMA) copolymer counterparts. The microstructural evolutions in the CTPEs during tensile deformation as investigated by in situ small-angle X-ray scattering (SAXS) revealed the role of the MWCNTs, which can provide additional cross-linking points and transform soft elastomers into strong ones
    corecore