121 research outputs found
Surface-wave solitons on the interface between a linear medium and a nonlocal nonlinear medium
We address the properties of surface-wave solitons on the interface between a
semi-infinite homogeneous linear medium and a semi-infinite homogeneous
nonlinear nonlocal medium. The stability, energy flow and FWHM of the surface
wave solitons can be affected by the degree of nonlocality of the nonlinear
medium. We find that the refractive index difference affects the power
distribution of the surface solitons in two media. We show that the different
boundary values at the interface can lead to the different peak position of the
surface solitons, but it can not influence the solitons stability with a
certain degree of nonlocality.Comment: 8 pages, 14 figures, 15 references, and so o
Nonlocal bright spatial solitons in defocusing Kerr media supported by PT symmetric potentials
It is studied the bright spatial solitons in nonlocal defocusing Kerr media
with parity-time (PT) symmetric potentials. We find that these solitons can
exist and be stable over a different range of potential parameters. The
influence of the degree of nonlocality on the solitons and the transverse
energy flow within the stable solitons are also examined.Comment: 4 page
Mechanical properties of magnesium-based wood-like material subjected to splitting tensile tests
To investigate the splitting tensile characteristics of a new building material, namely magnesium-based wood-like material (MWM), the cubic splitting tensile tests were carried out at a loading rate of 200 N/s. Full-field displacements and crack behaviors were measured using Digital Image Correlation, and the splitting tensile strength is 1.79 MPa. The elastic Young modulus, Poisson’s ratio, and axial compressive strength were measured as 2.21 GPa, 0.21, 8.76 MPa respectively. In the splitting tensile tests, primary cracks were observed to initiate from the geometric centre of the specimen and then extend to the loading ends where secondary cracks appeared. A new method for identifying cracking modes showed the secondary cracks were mainly caused by shear and tensile-shear failure, whereas the primary cracks were caused by tensile failure. An accurate method for estimating the elastic Young modulus, simultaneously with the determination of the splitting tensile strength of MWM cubes is proposed
Nonlocal gap solitons in parity-time symmetric optical lattices
We numerically study the nonlocal gap solitons in parity-time (PT) symmetric
optical lattices built into a nonlocal self-focusing medium. We state the
existence, stability, and propagation dynamics of such PT gap solitons in
detail. Simulated results show that there exist stable gap soltions. The
influences of the degree of nonlocality on the soliton power, the energy flow
density and the stable region of the PT gap solitons are also examined.Comment: 4 page
Surgery combined with radiotherapy for the treatment of solitary plasmacytoma of the rib: a case report and review of the literature
Rigid-flexible coupling dynamics simulation of planetary gear transmission based on MFBD
This paper deals with the problem of getting dynamic characteristics in complex mechanical multi-body system. Based on the MFBD (Multi-Flexible-Body Dynamics) technology, the rigid-flexible coupling dynamic simulation method is proposed, and then the method is applied to the planetary gear transmission. The results show that the dynamic stress distribution of planetary gear can be obtained to determine the dangerous location, and the dynamic response characteristics are more obvious. Then the simulation model of planetary gear transmission with broken tooth is established, the fault feature extraction in time-frequency domain is carried out using the acceleration signal. In addition, industrial data is also used to validate the effectiveness of the proposed method
Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II
Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P<0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement
- …