108,576 research outputs found
Light scattering and absorption properties of dust particles retrieved from satellite measurements
We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. The solar radiative forcing of dust aerosols has also been calculated using refined optical model and radiative transfer model
Model-Independent Reionization Observables in the CMB
We represent the reionization history of the universe as a free function in
redshift and study the potential for its extraction from CMB polarization
spectra. From a principal component analysis, we show that the ionization
history information is contained in 5 modes, resembling low-order Fourier modes
in redshift space. The amplitude of these modes represent a compact description
of the observable properties of reionization in the CMB, easily predicted given
a model for the ionization fraction. Measurement of these modes can ultimately
constrain the total optical depth, or equivalently the initial amplitude of
fluctuations to the 1% level regardless of the true model for reionization.Comment: 4 pages, 5 figures, submitted to PRD (rapid communications
A Fast Conservative Spectral Solver For The Nonlinear Boltzmann Collision Operator
We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam.. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M(2)N(4)logN) from the O(N-6) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results.Mathematic
Recommended from our members
HSV-2 Infection of Human Genital Epithelial Cells Upregulates TLR9 Expression Through the SP1/JNK Signaling Pathway
It is known that herpes simplex virus type 2 (HSV-2) triggers the activation of Toll-like receptor (TLR) 9 signaling pathway and the consequent production of antiviral cytokines in dendritic cells. However, the impact of HSV-2 infection on TLR9 expression and signaling in genital epithelial cells, the primary HSV-2 targets, has yet to be determined. In the current study, by using both human genital epithelial cell lines and primary genital epithelial cells as models, we found that HSV-2 infection enhances TLR9 expression at both mRNA and protein levels. Such enhancement is virus replication-dependent and CpG-independent, while the HSV-2-mediated upregulation of TLR9 does not activate TLR9 signaling pathway. Mechanistically, a SP1 binding site on TLR9 promoter appears to be essential for HSV-2-induced TLR9 transactivation. Upon HSV-2 infection, SP1 translocates from the cytoplasm to the nucleus, and consequently binds to TLR9 promoter. By using specific inhibitors, the JNK signaling pathway is shown to be involved in the HSV-2-induced TLR9 transactivation, while HSV-2 infection increases the phosphorylation but not the total level of JNK. In agreement, antagonism of JNK signaling pathway inhibits the HSV-2-induced SP1 nuclear translocation. Taken together, our study demonstrates that HSV-2 infection of human genital epithelial cells promotes TLR9 expression through SP1/JNK signaling pathway. Findings in this study provide insights into HSV-2-host interactions and potential targets for immune intervention
Polynomial loss of memory for maps of the interval with a neutral fixed point
We give an example of a sequential dynamical system consisting of
intermittent-type maps which exhibits loss of memory with a polynomial rate of
decay. A uniform bound holds for the upper rate of memory loss. The maps may be
chosen in any sequence, and the bound holds for all compositions.Comment: 16 page
Phonon Squeezed States Generated by Second Order Raman Scattering
We study squeezed states of phonons, which allow a reduction in the quantum
fluctuations of the atomic displacements to below the zero-point quantum noise
level of coherent phonon states. We investigate the generation of squeezed
phonon states using a second order Raman scattering process. We calculate the
expectation values and fluctuations of both the atomic displacement and the
lattice amplitude operators, as well as the effects of the phonon squeezed
states on macroscopically measurable quantities, such as changes in the
dielectric constant. These results are compared with recent experiments.Comment: 4 pages, REVTE
Rotating Convection in an Anisotropic System
We study the stability of patterns arising in rotating convection in weakly
anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy,
either an endogenous characteristic of the system or induced by external
forcing, can stabilize periodic rolls in the K\"uppers-Lortz chaotic regime.
For the particular case of rotating convection with time-modulated rotation
where recently, in experiment, chiral patterns have been observed in otherwise
K\"uppers-Lortz-unstable regimes, we show how the underlying base-flow breaks
the isotropy, thereby affecting the linear growth-rate of convection rolls in
such a way as to stabilize spirals and targets. Throughout we compare
analytical results to numerical simulations of the Swift-Hohenberg equation
Statistical properties of the low-temperature conductance peak-heights for Corbino discs in the quantum Hall regime
A recent theory has provided a possible explanation for the ``non-universal
scaling'' of the low-temperature conductance (and conductivity) peak-heights of
two-dimensional electron systems in the integer and fractional quantum Hall
regimes. This explanation is based on the hypothesis that samples which show
this behavior contain density inhomogeneities. Theory then relates the
non-universal conductance peak-heights to the ``number of alternating
percolation clusters'' of a continuum percolation model defined on the
spatially-varying local carrier density. We discuss the statistical properties
of the number of alternating percolation clusters for Corbino disc samples
characterized by random density fluctuations which have a correlation length
small compared to the sample size. This allows a determination of the
statistical properties of the low-temperature conductance peak-heights of such
samples. We focus on a range of filling fraction at the center of the plateau
transition for which the percolation model may be considered to be critical. We
appeal to conformal invariance of critical percolation and argue that the
properties of interest are directly related to the corresponding quantities
calculated numerically for bond-percolation on a cylinder. Our results allow a
lower bound to be placed on the non-universal conductance peak-heights, and we
compare these results with recent experimental measurements.Comment: 7 pages, 4 postscript figures included. Revtex with epsf.tex and
multicol.sty. The revised version contains some additional discussion of the
theory and slightly improved numerical result
- …