2,484 research outputs found

    Optimized access to distributed relational database system

    No full text
    International audienceEfficient and friendly access to the large amount of data distributed over the wide area network is a challenge for the near future LCG experiments. The problem can be solved using current standard open technologies and tools. A JDBC standard soution has been chosen as a base for a comprehensive system for the relational data access and management. Widely available open tools have been reused and extended to satisfy HEP needs

    Using Java analysis studio as an inferface to the ATLAS offline framework

    No full text
    International audienceHuge requirements on computing resources have made it difficult to run Frameworks of some new HEP experiments on the users' personal workstations. Fortunately, new software technology allows us to give users back at least a bit of the user-friendliness they were used to in the past. A Java Analysis Studio (JAS) plugin has been developed, which accesses the Python API of the Atlas Offline Framework (Athena) over the XML-RPC layer. This plugin gives a userthe full power of JAS over the resources otherwise only available within Athena. A user can access any Athena functionality and handle all results directly in JAS. Graphical adapters to some Athena services have been delivered to ease the access even further

    POOL File Catalog, Collection and Metadata Components

    Full text link
    The POOL project is the common persistency framework for the LHC experiments to store petabytes of experiment data and metadata in a distributed and grid enabled way. POOL is a hybrid event store consisting of a data streaming layer and a relational layer. This paper describes the design of file catalog, collection and metadata components which are not part of the data streaming layer of POOL and outlines how POOL aims to provide transparent and efficient data access for a wide range of environments and use cases - ranging from a large production site down to a single disconnected laptops. The file catalog is the central POOL component translating logical data references to physical data files in a grid environment. POOL collections with their associated metadata provide an abstract way of accessing experiment data via their logical grouping into sets of related data objects.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOKT00

    Feasibility of Beauty Baryon Polarization Measurement in Lambda0 J/psi Decay Channel by Atlas-LHC

    Full text link
    The possibility of beauty baryon polarization measurement by cascade decay angular distribution analysis in the channel Lambda0 J/psi --> p pi- l+ l- is demonstrated. The error analysis shows that in the proposed LHC experiment ATLAS at the luminosity 104pb110^{4} pb^{-1} the polarization can be measured with the statistical precision better than δ=0.010\delta=0.010 for Lambda_b0 and δ=0.17\delta=0.17 for Xi_b0.Comment: 12 pages (LaTeX + AMS-LaTeX) and 3 figures in postscript (uuencoded, compressed tar file included at the end of the paper), PRA-HEP-94/

    A prototype for the evolution of ATLAS EventIndex based on Apache Kudu storage

    Get PDF
    The ATLAS EventIndex has been in operation since the beginning of LHC Run 2 in 2015. Like all software projects, its components have been constantly evolving and improving in performance. The main data store in Hadoop, based on MapFiles and HBase, can work for the rest of Run 2 but new solutions are explored for the future. Kudu offers an interesting environment, with a mixture of BigData and relational database features, which look promising at the design level. This environment is used to build a prototype to measure the scaling capabilities as functions of data input rates, total data volumes and data query and retrieval rates. In this proceedings we report on the selected data schemas and on the current performance measurements with the Kudu prototype

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

    Get PDF
    We present a measurement of two-particle angular correlations in proton- proton collisions at s√=900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum p T  > 100 MeV and pseudorapidity |η| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to pythia 8 and herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of pythia 6. The data are not satisfactorily described by any of these models

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at &#8730;s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|&#60;2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore