233 research outputs found
Congressâs War Powers and the Political Question Doctrine After Smith v. Obama
More than seventeen years after the attacks of September 11, 2001, the United States continues to battle terrorist organizations inspired by or derived from al Qaeda under the legal aegis of the 2001 Authorization for the Use of Military Force. The government has interpreted this law as providing expansive authority to conduct military operations against actors that did not even exist in 2001, including the Islamic State of Iraq and Syria (âISISâ). Congress has largely supported this effort in annual authorizing legislation and by funding the campaign against ISIS.
Despite this permissive legal environment, the government pressed for even greater flexibility in Smith v. Obama , a 2016 challenge to the legal basis for the anti-ISIS campaign, arguing that the war powers are subject to the political question doctrine and thus outside the purview of the courts. The district court accepted this argument, contravening recent Supreme Court decisions that narrow the doctrineâs scope. In doing so, the Smith court cast doubt on the primacy of Congress in bringing the United States into war.
In response, this Note offers three insights. First, it assesses historical decisions in cases implicating executive branch war powers in light of the modern political question doctrine. Second, it critiques the Smith courtâs failure to squarely confront the separation of powers questions presented by the case. Finally, it offers a series of recommendations for Congress and the courts to avoid the pitfalls of the political question doctrine in similar cases in the future
Digital Asset Valuation
Existing valuation metrics for legacy assets only limitedly apply in the context of digital assets. The valuation infrastructure in the current legal, accounting, technology, and back-office framework, in combination with the immaturity of the digital asset market, create an environment of digital asset valuation uncertainty. This article evaluates the existing asset valuation methods and their limited application to digital assets before contrasting new and evolving digital asset valuation trends
Isolation of YAC Clones From the Pericentromeric Region of Chromosome 10 and Development of New Genetic Markers Linked to the Multiple Endocrine Neoplasia Type 2A Gene
Genetic linkage mapping and contig assembly using yeast artificial chromosome (YAC) technology form the basis of our strategy to clone and define the genomic structure of the pericentromeric region of chromosome 10 containing the multiple endocrine neoplasia type 2A gene. Thus far YAC walks have been initiated from five chromosome 10 pericentromeric loci including RBP3, D10S94, RET, D10Z1, and FNRB. Long range pulsed-field gel electrophoresis maps are constructed from the YACs isolated to define clone overlaps and to identify putative CpG islands. Bidirectional YAC walks are continued by rescreening the YAC library with sequence-tagged site assays developed from endclones. Several new restriction fragment length polymorphisms and simple sequence repeat polymorphism markers have been identified from the YAC clones. In particular, two highly informative (CA)n dinucleotide repeat markers, sTCL-1 from proximal chromosome 10p (16 alleles, PIC = 0.68) and sJRH-1 from the RBP3 locus (18 alleles. PIC = 0.88), provide useful reagents for a polymerase chain reaction-based predictive genetic test that can be performed rapidly from small amounts of DNA
Extended supersymmetric sigma models in AdS_4 from projective superspace
There exist two superspace approaches to describe N=2 supersymmetric
nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in
terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and
arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS
projective-superspace techniques developed in arXiv:0807.3368. The virtue of
the approach (i) is that it makes manifest the geometric properties of the N=2
supersymmetric sigma-models in AdS_4. The target space must be a non-compact
hyperkahler manifold endowed with a Killing vector field which generates an
SO(2) group of rotations on the two-sphere of complex structures. The power of
the approach (ii) is that it allows us, in principle, to generate hyperkahler
metrics as well as to address the problem of deformations of such metrics.
Here we show how to relate the formulation (ii) to (i) by integrating out an
infinite number of N=1 AdS auxiliary superfields and performing a superfield
duality transformation. We also develop a novel description of the most general
N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral
superfields on three-dimensional N=2 flat superspace without central charge.
This superspace naturally originates from a conformally flat realization for
the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates
for AdS_4. This novel formulation allows us to uncover several interesting
geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE
Radius Stabilization and Anomaly-Mediated Supersymmetry Breaking
We analyze in detail a specific 5-dimensional realization of a
"brane-universe" scenario where the visible and hidden sectors are localized on
spatially separated 3-branes coupled only by supergravity, with supersymmetry
breaking originating in the hidden sector. Although general power counting
allows order 1/M_{Planck}^2 contact terms between the two sectors in the
4-dimensional theory from exchange of supergravity Kaluza-Klein modes, we show
that they are not present by carefully matching to the 5-dimensional theory. We
also find that the radius modulus corresponding to the size of the compactified
dimension must be stabilized by additional dynamics in order to avoid run-away
behavior after supersymmetry breaking and to understand the communication of
supersymmetry breaking. We stabilize the radius by adding two pure Yang--Mills
sectors, one in the bulk and the other localized on a brane. Gaugino
condensation in the 4-dimensional effective theory generates a superpotential
that can naturally fix the radius at a sufficiently large value that
supersymmetry breaking is communicated dominantly by the recently-discovered
mechanism of anomaly mediation. The mass of the radius modulus is large
compared to m_{3/2}. The stabilization mechanism requires only parameters of
order one at the fundamental scale, with no fine-tuning except for the
cosmological constant.Comment: 20 pages, LaTeX2
Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity
Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations
Proteome and Antigen Profiling of Coxiella burnetii Developmental Forms
A biphasic developmental cycle whereby highly resistant small-cell variants (SCVs) are generated from large-cell variants (LCVs) is considered fundamental to the virulence of Coxiella burnetii, the causative agent of human Q fever. In this study a proteome analysis of C. burnetii developmental forms was conducted to provide insight into their unique biological and immunological properties. Silver-stained gels of SCV and LCV lysates separated by two-dimensional (2-D) gel electrophoresis resolved over 675 proteins in both developmental forms. Forty-eight proteins were greater than twofold more abundant in LCVs than in SCVs, with six proteins greater than twofold more abundant in SCVs than in LCVs. Four and 15 upregulated proteins of SCVs and LCVs, respectively, were identified by mass spectrometry, and their predicted functional roles are consistent with a metabolically active LCV and a structurally resistant SCV. One-dimensional and 2-D immunoblots of cell form lysates probed with sera from infected/vaccinated guinea pigs and convalescent-phase serum from human patients who had recovered from acute Q fever, respectively, revealed both unique SCV/LCV antigens and common SCV/LCV antigens that were often differentially synthesized. Antigens recognized during human infection were identified by mass spectroscopy and included both previously described immunodominant proteins of C. burnetii and novel immunogenic proteins that may be important in the pathophysiology of clinical Q fever and/or the induction of protective immunity
Is disrupted sleep a risk factor for Alzheimer's disease?:Evidence from a two-sample Mendelian randomization analysis
Background
It is established that Alzheimerâs disease (AD) patients experience sleep disruption. However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a risk factor for the onset of AD.
Methods
We used the largest published genome-wide association studies of self-reported and accelerometer-measured sleep traits (chronotype, duration, fragmentation, insomnia, daytime napping and daytime sleepiness), and AD. Mendelian randomization (MR) was used to estimate the causal effect of self-reported and accelerometer-measured sleep parameters on AD risk.
Results
Overall, there was little evidence to support a causal effect of sleep traits on AD risk. There was some suggestive evidence that self-reported daytime napping was associated with lower AD risk [odds ratio (OR): 0.70, 95% confidence interval (CI): 0.50â0.99). Some other sleep traits (accelerometer-measured âeveningnessâ and sleep duration, and self-reported daytime sleepiness) had ORs of a similar magnitude to daytime napping, but were less precisely estimated.
Conclusions
Overall, we found very limited evidence to support a causal effect of sleep traits on AD risk. Our findings provide tentative evidence that daytime napping may reduce AD risk. Given that this is the first MR study of multiple self-report and objective sleep traits on AD risk, findings should be replicated using independent samples when such data become available
An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers
Solar chromospheric observations of sunspot umbrae offer an exceptional view of magneto-hydrodynamic wave phenomena. In recent years, a wealth of wave signatures related to propagating magneto-acoustic modes have been presented, which demonstrate complex spatial and temporal structuring of the wave components. Theoretical modelling has demonstrated how these ubiquitous waves are consistent with an m=0 slow magneto-acoustic mode, which are excited by trapped sub-photospheric acoustic (p-mode) waves. However, the spectrum of umbral waves is broad, suggesting that the observed signatures represent the superposition of numerous frequencies and/or modes. We apply Fourier filtering, in both spatial and temporal domains, to extract chromospheric umbral wave characteristics consistent with an m=1 slow magneto-acoustic mode. This identification has not been described before. Angular frequencies of 0.037 +/- 0.007 rad/s (2.1 +/- 0.4 deg/s), corresponding to a period approximately 170 s for the m=1 mode are uncovered for spatial wavenumbers in the range of 0.45<k<0.90 arcsec^-1 (5000-9000 km). Theoretical dispersion relations are solved, with corresponding eigenfunctions computed, which allows the density perturbations to be investigated and compared with our observations. Such magnetohydrodynamic modelling confirms our interpretation that the identified wave signatures are the first direct observations of an m=1 slow magneto-acoustic mode in the chromospheric umbra of a sunspot
- âŠ