5,265 research outputs found
Characteristics and classification of A-type supergiants in the Small Magellanic Cloud
We address the relationship between spectral type and physical properties for
A-type supergiants in the SMC. We first construct a self-consistent
classification scheme for A supergiants, employing the calcium K to H epsilon
line ratio as a temperature-sequence discriminant. Following the precepts of
the `MK process', the same morphological criteria are applied to Galactic and
SMC spectra with the understanding there may not be a correspondence in
physical properties between spectral counterparts in different environments. We
then discuss the temperature scale, concluding that A supergiants in the SMC
are systematically cooler than their Galactic counterparts at the same spectral
type, by up to ~10%. Considering the relative line strengths of H gamma and the
CH G-band we extend our study to F and early G-type supergiants, for which
similar effects are found. We note the implications for analyses of
extragalactic luminous supergiants, for the flux-weighted gravity-luminosity
relationship and for population synthesis studies in unresolved stellar
systems.Comment: 14 pages, 14 figures, accepted by MNRAS; minor section removed prior
to final publicatio
A recalibration of IUE NEWSIPS low dispersion data
While the low dispersion IUE NEWSIPS data products represent a significant
improvement over original IUE SIPS data, they still contain serious systematic
effects which compromise their utility for certain applications. We show that
NEWSIPS low resolution data are internally consistent to only 10-15% at best,
with the majority of the problem due to time dependent systematic effects. In
addition, the NEWSIPS flux calibration is shown to be inconsistent by nearly
10%.
We examine the origin of these problems and proceed to formulate and apply
algorithms to correct them to ~ 3% level -- a factor of 5 improvement in
accuracy. Because of the temporal systematics, transforming the corrected data
to the IUE flux calibration becomes ambiguous. Therefore, we elect to transform
the corrected data onto the HST FOS system. This system is far more
self-consistent, and transforming the IUE data to it places data from both
telescopes on a single system.
Finally, we argue that much of the remaining 3% systematic effects in the
corrected data is traceable to problems with the NEWSIPS intensity
transformation function (ITF). The accuracy could probably be doubled by
rederiving the ITF.Comment: Submitted to ApJ Supplement, 35 pages, 13 figures, LaTeX - AASTEX
aas2pp4.st
A Search for Intrinsic Polarization in O Stars with Variable Winds
New observations of 9 of the brightest northern O stars have been made with
the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the
AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the
Johnson-Cousins UBVRI broadband filter system. Comparison with earlier
measurements shows no clearly defined long-term polarization variability. For
all 9 stars the wavelength dependence of the degree of polarization in the
optical range can be fit by a normal interstellar polarization law. The
polarization position angles are practically constant with wavelength and are
consistent with those of neighboring stars. Thus the simplest conclusion is
that the polarization of all the program stars is primarily interstellar.
The O stars chosen for this study are generally known from ultraviolet and
optical spectroscopy to have substantial mass loss rates and variable winds, as
well as occasional circumstellar emission. Their lack of intrinsic polarization
in comparison with the similar Be stars may be explained by the dominance of
radiation as a wind driving force due to higher luminosity, which results in
lower density and less rotational flattening in the electron scattering inner
envelopes where the polarization is produced. However, time series of
polarization measurements taken simultaneously with H-alpha and UV spectroscopy
during several coordinated multiwavelength campaigns suggest two cases of
possible small-amplitude, periodic short-term polarization variability, and
therefore intrinsic polarization, which may be correlated with the more widely
recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses
aastex.cls preprint package; accepted by The Astronomical Journa
Amplitude variability in satellite photometry of the non-radially pulsating O9.5V star zeta Oph
We report a time-series analysis of satellite photometry of the non-radially
pulsating Oe star zeta Oph, principally using data from SMEI obtained
2003--2008, but augmented with MOST and WIRE results. Amplitudes of the
strongest photometric signals, at 5.18, 2.96, and 2.67/d, each vary
independently over the 6-year monitoring period (from ca. 30 to <2 mmag at
5.18/d), on timescales of hundreds of days. Signals at 7.19/d and 5.18/d have
persisted (or recurred) for around two decades. Supplementary spectroscopic
observations show an H-alpha emission episode in 2006; this coincided with
small increases in amplitudes of the three strongest photometric signals.Comment: MNRAS, in pres
FUSE Observations of a Full Orbit of Hercules X-1: Signatures of Disk, Star, and Wind
We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the
Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037
line profiles through eclipse ingress and egress indicate a Keplerian accretion
disk spinning prograde with the orbit. These observations may show the first
double-peaked accretion disk line profile to be seen in the Hercules X-1
system. Doppler tomograms of the emission lines show a bright spot offset from
the Roche lobe of the companion star HZ Her, but no obvious signs of the
accretion disk. Simulations show that the bright spot is too far offset from
the Roche lobe to result from uneven X-ray heating of its surface. The absence
of disk signatures in the tomogram can be reproduced in simulations which
include absorption from a stellar wind. We attempt to diagnose the state of the
emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The
latter may be enhanced through Bowen fluorescence.Comment: Accepted for publication in The Astrophysical Journa
The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars
A primary goal of the FUSE mission is to understand the origin of the O VI
ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along
sightlines to OB-type stars, these interstellar components are usually blended
with O VI stellar wind profiles, which frequently vary in shape. In order to
assess the effects of this time-dependent blending on measurements of the
interstellar O VI lines, we have undertaken a mini-survey of repeated
observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud.
These sparse time series, which consist of 2-3 observations separated by
intervals ranging from a few days to several months, show that wind variability
occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does
in other resonance lines. However, in the interstellar O VI 1032
region, the O VI 1038 wind varies only in 30% of the cases. By
examining cases exhibiting large amplitude variations, we conclude that
stellar-wind variability {\em generally} introduces negligible uncertainty for
single interstellar O VI components along Galactic lines of sight, but can
result in substantial errors in measurements of broader components or blends of
components like those typically observed toward stars in the Large Magellanic
Cloud. Due to possible contamination by discrete absorption components in the
stellar O VI line, stars with terminal velocities greater than or equal to the
doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette
Hercules X-1: Empirical Models of UV Emission Lines
The UV emission lines of Hercules X-1, resolved with the HST GHRS and STIS,
can be divided into broad (FWHM 750 km/s) and narrow (FWHM 150 km/s)
components. The broad lines can be unambiguously identified with emission from
an accretion disk which rotates prograde with the orbit. The narrow lines,
previously identified with the X-ray illuminated atmosphere of the companion
star, are blueshifted at both phi=0.2 and phi=0.8 and the line flux at phi=0.2
is 0.2 of the flux at phi=0.8. Line ratio diagnostics show that the density of
the narrow line region is log n=13.4+/-0.2 and the temperature is
T=1.0+/-0.2x10^5 K. The symmetry of the eclipse ingress suggests that the line
emission on the surface of the disk is left-right symmetric relative to the
orbit. Model fits to the O V, Si IV, and He II line profiles agree with this
result, but fits to the N V lines suggest that the receding side of the disk is
brighter. We note that there are narrow absorption components in the N V lines
with blueshifts of 500 km/s.Comment: To be published in the Astrophysical Journa
Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance
We have conducted a programme to determine the fundamental parameters of a
substantial number of eclipsing binaries of spectral types O and B in the Small
Magellanic Cloud. New spectroscopic data, obtained with the two-degree-field
multi-object spectrograph on the 3.9-m Anglo-Australian Telescope, have been
used in conjunction with photometry from the Optical Gravitational Lens
Experiment (OGLE-II) database of SMC eclipsing binaries. Previously we reported
results for 10 systems; in this second and concluding paper we present spectral
types, masses, radii, temperatures, surface gravities and luminosities for the
components of a further 40 binaries. The full sample of 50 OB-type eclipsing
systems is the largest single set of fundamental parameters determined for
high-mass binaries in any galaxy. We find that 21 of the systems studied are in
detached configurations, 28 are in semi-detached post-mass-transfer states, and
one is a contact binary.
Each system provides a primary distance indicator. We find a mean distance
modulus to the SMC of 18.91+/-0.03+/-0.1 (internal and external uncertainties;
D=60.6+/-1.0 kpc). This value represents one of the most precise available
determinations of the distance to the SMC.Comment: paper accepted on 22 November 2004 for publication by MNRAS; 26
pages, 6 tables, 12 figure
- …