19,006 research outputs found

    Brownian molecular motors driven by rotation-translation coupling

    Full text link
    We investigated three models of Brownian motors which convert rotational diffusion into directed translational motion by switching on and off a potential. In the first model a spatially asymmetric potential generates directed translational motion by rectifying rotational diffusion. It behaves much like a conventional flashing ratchet. The second model utilizes both rotational diffusion and drift to generate translational motion without spatial asymmetry in the potential. This second model can be driven by a combination of a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven) depending on the chosen parameters. In the third model, elements of both the Brownian motor and powerstroke mechanisms are combined by switching between three distinct states. Relevance of the model to biological motor proteins is discussed.Comment: 11 pages, 8 figure

    POSE Algorithms for Automated Docking

    Get PDF
    POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data

    Properties of Intercalated 2H-NbSe2, 4Hb-TaS2 and 1T-TaS2

    Get PDF
    The layered compounds 2H-NbSe, 24Hb-TaS, 2and 1T-TaS2 have been intercalated with organic molecules; and the resulting crystal structure, heat capacity, conductivity, and superconductivity have been studied. The coordination in the disulfide layers was found to be unchanged in the product phase. Resistance minima appear and the superconducting transition temperature is reduced in the NbSe2 complex. Conversely, superconductivity is induced in the 4Hb-TaS2 complex. Corresponding evidence of a large change of the density of states, negative for 2H-NbSe2 and positive for 4Hb-TaS2, was also observed upon intercalation. The transport properties of all the intercalation complexes show a pronounced dependence upon the coordination of the transition metal

    Actively Contracting Bundles of Polar Filaments

    Full text link
    We introduce a phenomenological model to study the properties of bundles of polar filaments which interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the unstable regime and the tensile stress generated in the bundle are discussed. We find that the interaction of parallel filaments can induce unstable behavior and is responsible for active contraction and tension in the bundle. Interaction between antiparallel filaments leads to filament sorting. Our model could apply to simple contractile structures in cells such as stress fibers.Comment: 4 pages, 4 figures, RevTex, to appear in Phys. Rev. Let

    The Effect of an Abnormal BMI on Orthopaedic Trauma Patients: A Systematic Review and Meta-Analysis

    Get PDF
    Aims: The aim of this systemic review is to identify the complications that arise in operating on orthopaedic trauma patients with an abnormal body mass index (BMI). Materials and Methods: Systematic literature search using a combination of MESH subject headings and free text searching of Medline, Embase, SCOPUS and Cochrane databases in August 2019. Any orthopaedic injury requiring surgery was included. Papers were reviewed and quality assessed by two independent reviewers to select for inclusion. Where sufficiently homogenous, meta-analysis was performed. Results: A total of 26 articles (379,333 patients) were selected for inclusion. All complications were more common in those with a high BMI (>30). The odds ratio (OR) for high BMI patients sustaining post-operative complication of any type was 2.32 with a 23% overall complication rate in the BMI > 30 group, vs. 14% in the normal BMI group (p < 0.05). The OR for mortality was 3.5. The OR for infection was 2.28. The OR for non-union in tibial fractures was 2.57. Thrombotic events were also more likely in the obese group. Low BMI (<18.5) was associated with a higher risk of cardiac complications than either those with a normal or high BMI (OR 1.56). Conclusion: Almost all complications are more common in trauma patients with a raised BMI. This should be made clear during the consent process, and strategies developed to reduce these risks where possible. Unlike in elective surgery, BMI is a non-modifiable risk factor in the trauma context, but an awareness of the complications should inform clinicians and patients alike. Underweight patients have a higher risk of developing cardiac complications than either high or normal BMI patient groups, but as few studies exist, further research into this group is recommende

    Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    Get PDF
    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes

    Orbital Express AVGS Validation and Calibration for Automated Rendezvous

    Get PDF
    From March to July of 2007, the DARPA Orbital Express mission achieved a number of firsts in autonomous spacecraft operations. The NASA Advanced Video Guidance Sensor (AVGS) was the primary docking sensor during the first two dockings and was used in a blended mode three other automated captures. The AVGS performance exceeded its specification by approximately an order of magnitude. One reason that the AVGS functioned so well during the mission was that the validation and calibration of the sensor prior to the mission advanced the state-of-the-art for proximity sensors. Some factors in this success were improvements in ground test equipment and truth data, the capability for ILOAD corrections for optical and other effects, and the development of a bias correction procedure. Several valuable lessons learned have applications to future proximity sensors

    Generic phase diagram of active polar films

    Full text link
    We study theoretically the phase diagram of compressible active polar gels such as the actin network of eukaryotic cells. Using generalized hydrodynamics equations, we perform a linear stability analysis of the uniform states in the case of an infinite bidimensional active gel to obtain the dynamic phase diagram of active polar films. We predict in particular modulated flowing phases, and a macroscopic phase separation at high activity. This qualitatively accounts for experimental observations of various active systems, such as acto-myosin gels, microtubules and kinesins in vitro solutions, or swimming bacterial colonies.Comment: 4 pages, 1 figur
    • …