415 research outputs found
The Longitudinal Variation of Equatorial Waves due to Propagation on a Varying Zonal Flow
The general 1D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behavior are found, depending on the sign of the group velocity cg and a wave property B. For B positive, the wave energy and the wavenumber vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang occurs where cg goes to zero. However, for B negative, they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analyzed in detail using the theory. For nondispersive Kelvin waves, B reduces to 2, and an analytic solution is possible. For all the waves considered, B is positive, except for the westward-moving mixed Rossby–gravity (WMRG) wave, which can have negative B as well as positive B. Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper-tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However, the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic Oceans are generally not in accord with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher-latitude wave activity
Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs
The extra-tropical response to El Nino in a "low" horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Nino. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Nino in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes
Recommended from our members
A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere
This study presents a detailed view of the seasonal variability of upper-level cut-off lows (COLs) in the Southern Hemisphere. The COLs are identified and tracked using data from a 36-year period of the European Centre for Medium Range Weather Forecast reanalysis (ERA-Interim). The objective identification of the COLs uses a new approach, which is based on 300 hPa relative vorticity minima, and three restrictive criteria of the presence of a cold-core, stratospheric potential vorticity intrusion, and cut-off cyclonic circulation. The highest COL activity is in agreement with previous studies, located near three main continental areas (Australia, South America, and Africa), with maximum frequencies usually observed in the austral autumn. The COL mean intensity values show a marked seasonal and spatial variation, with maximum (minimum) values during the austral winter (summer), a unique feature that has not been observed previously in studies based on the geopotential. The link between intensity and lysis is examined, and finds that weaker systems are more susceptible to lysis in the vicinity of the Andes Cordillera, associated with the topographic Rossby wave. Lysis and genesis regions are close to each other, confirming that COLs are quasi-stationary systems. Also, COLs tend to move eastward and are faster over the higher latitudes. The mean growth/decay rates coincide with the major genesis and lysis density regions, such as the significant decay values across the Andes all year. As a consequence of using vorticity for the tracking method a longer lifetime of COLs is detected than in other studies, but this does not affect the total frequency of occurrence. Comparisons with other studies suggest that the differences in seasonality are due to uncertainties in the reanalyses and the methods used to identify COLs
Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?
Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers.
Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear.
Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed
Recommended from our members
Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models
This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions
High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester
Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
Recommended from our members
The role of potential vorticity anomalies in the Somali Jet on Indian summer monsoon intraseasonal variability
The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during the summer season (June to September). Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of this circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind stress curl, and upwelling processes. The feedback mechanism is consistent with observed coupled ocean-atmosphere system variability timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon subseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet
- …