2,415 research outputs found

    Experimental studies of a new thermoelectric material based on semiconductor solid solution Ti1-xAlxNiSn

    Get PDF
    The structural, electrokinetic, and energetic properties of the Ti1-xAlxNiSn semiconductor solid solution, obtained by introducing of Al atoms into the structure of the TiNiSn half-Heusler phase by substituting Ti atoms in the crystallographic position 4a, were studied. It is shown that in the range of concentrations x = 0–0.01, Al atoms mainly replace Ni atoms in the 4c position, generating acceptor states. It was established that at temperatures T = 80–160 K, the ratio of concentrations of ionized acceptor and donor states in n-Ti1-xAlxNiSn, х = 0–0.04, is unchanged, but the concentration of donors is greater. At higher temperatures, T ≥ 250 K, deep donor states that existed in n-TiNiSn as a result of "a priori doping" of the semiconductor are ionized. An additional mechanism for the generation of donor states in n-Ti1-xAlxNiSn when the tetrahedral voids of the structure are partially occupied by Al atoms was revealed. The concentration ratio of the generated donor-acceptor states determines the position of the Fermi level εF and the conductivity mechanisms of n-Ti1-xAlxNiSn. The studied semiconductor solid solution is a promising thermoelectric material

    Nanosized Sodium-Doped Lanthanum Manganites: Role of the Synthetic Route on their Physical Properties

    Full text link
    In this paper we present the results of the synthesis and characterisation of nanocrystalline La1-xNaxMnO3+delta samples. Two synthetic routes were employed: polyacrylamide-based sol-gel and propellant synthesis. Pure, single phase materials were obtained with grain size around 35 nm for the sol-gel samples and around 55 nm for the propellant ones, which moreover present a more broaden grain size distribution. For both series a superparamagnetic behaviour was evidenced by means of magnetisation and EPR measurements with peculiar features ascribable to the different grain sizes and morphology. Preliminary magnetoresistivity measurements show enhanced low-field (< 1 T) magnetoresistance values which suggest an interesting applicative use of these manganites.Comment: 31 Pages 10 Figures to appear in Chem. Mate

    Phase equilibrium diagram of Y-Cu-Sb system at 870 K

    Get PDF
    The interaction of the components in the Y-Cu-Sb ternary system was investigated using the methods of X-ray phase analysis, microstructure, and energy-dispersive X-ray spectroscopy in the whole concentration range at 870 K. At the temperature of investigation Y-Cu-Sb system is characterized by the formation of three ternary compounds: Y3Cu22Sb9 (Dy3Cu20+xSb11-x structure type, space group F-43m, a=1.6614(3) nm), Y3Cu3Sb4 (Y3Au3Sb4 structure type, space group I-43d, а=0.95357(5) nm), YCuSb2 (HfCuSi2 structure type, space group P4/nmm, a=0.42580(1), c=0.98932(3) nm). The solubility of copper in the binary compound YSb (NaCl structure type) extends up to 8 at. %

    Потрійна система Er-Cr-Ge

    Get PDF
    The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er−Cr−Ge system results in the formation of two ternary compounds: ErCr6Ge6 (MgFe6Ge6-type, space group P6/mmm, Pearson symbol hP13; a = 5.15149(3), c = 8.26250(7) Ǻ; RBragg = 0.0493, RF = 0.0574) and ErCr1-хGe2 (CeNiSi2-type, space group Cmcm, Pearson symbol oS16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) Ǻ; RBragg = 0.0473, RF = 0.0433) at investigated temperature. For the ErCr1-xGe2 compound, the homogeneity region was determined (ErCr0.28-0.38Ge2; a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) Ǻ).Ізотермічний переріз діаграми стану потрійної системи Er–Cr–Ge побудований за температури 1070&nbsp;K в повному концентраційному інтервалі методами рентгенофазового, рентгеноструктурного і мікроструктурного аналізів. Взаємодія компонентів у системі Er–Cr–Ge за температури дослідження характеризується утворенням двох тернарних сполук ErCr6Ge6 (структурний тип MgFe6Ge6, просторова група P6/mmm, символ Пірсона hP13; a = 5,15149(3), c = 8,26250(7) Ǻ; RBragg = 0,0493, RF = 0,0574) іErCr1-хGe2 (структурний тип CeNiSi2, просторова група Cmcm, символ Пірсона oS16, a = 4,10271(5), b = 15,6652(1), c = 3,99017(4) Ǻ; RBragg = 0,0473, RF = 0,0433). Для сполуки ErCr1-хGe2 визначена область гомогенності (ErСr0,28-0,38Ge2; a&nbsp;=&nbsp;4,10271(5)-4,1418(9), b&nbsp;=&nbsp;15,6652(1)-15,7581(4), c&nbsp;=&nbsp;3,99017(4)-3,9291(1)&nbsp;Ǻ)

    Ізотермічний переріз потрійної системи Ho–Cu–Sn при 670 K

    Get PDF
    The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho–Cu–Sn system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.Взаємодія компонентів у потрійній системі Ho-Cu-Sn досліджена за температури 670 K в повномуконцентраційному інтервалі методами рентгенівської дифракції і рентгеноспектрального аналізу. При 670K в системі утворюються чотири тернарні сполуки: HoCuSn (структурний тип LiGaGe, просторова групаP63mc), Ho3Cu4Sn4 (структурний тип Gd3Cu4Ge4, просторова група Immm), HoCu5Sn (структурний типCeCu5Au, просторова група Pnma) і Ho1.9Cu9.2Sn2.8 (структурний тип Dy1.9Cu9.2Sn2.8, просторова групаP63/mmc). Встановлено утворення твердого розчину включення на основі бінарної сполуки HoSn2(структурний тип ZrSi2) до вмісту 5 aт. % Cu

    Дослідження структурних, кінетичних та енергетичних властивостей напівпровідникового твердого розчину Zr1-xVxNiSn

    Get PDF
    Structural, electrokinetic and energy state characteristics of the Zr1-xVxNiSn semiconductive solid solution (х=0–0.10) were investigated in the temperature interval 80–400 К. It was shown that doping of the ZrNiSn compound by V atoms (rV=0.134 nm) due to substitution of Zr (rZr=0.160 nm) results in increase of lattice parameter&nbsp;а(х) of Zr1-xVxNiSn indicating unforecast structural change. Based on analysis of the motion rate of the Fermi level ΔεF/Δх&nbsp;for Zr1-xVxNiSn in direction of the conduction band it was concluded about simultaneous generation of the structural defects of the donor and acceptor nature (donor-acceptor pairs) by unknown mechanism and creation of the corresponding energy levels in the band gap of the semiconductor.Досліджено особливості структурних, кінетичних та енергетичних характеристик напівпровідникового твердого розчину Zr1-xVxNiSn (х=0–0.10) в інтервалі температур 80–400 К. Показано, що уведення атомів V (rV=0.134 нм) у структуру сполуки ZrNiSn шляхом заміщення Zr (rZr=0.160 нм) супроводжується неочікуваним збільшенням значень періоду елементарної комірки&nbsp;а(х) Zr1-xVxNiSn, вказуючи на непрогнозовані структурні зміни. На основі аналізу швидкості руху рівня Фермі ΔεF/Δх&nbsp;Zr1-xVxNiSn у напрямі зони провідності зроблено висновок про одночасне генерування у кристалі структурних дефектів донорної та акцепторної природи (донорно-акцепторні пари) за невідомим механізмом, які породжують відповідні енергетичні рівні у забороненій зоні напівпровідник

    Синтез і електротранспортні властивості напівпровідникового твердого розчину Er1-xScxNiSb

    Get PDF
    Samples of Er1-xScxNiSb (x = 0–0.10) solid solution were synthesized by an arc-melting and the effect of doping by Sc atoms on the electrokinetic and energetic characteristics of the half-Heusler ErNiSb phase was investigated. It was established that at the studied concentrations the main carriers of electricity in the Er1-xScxNiSb semiconductor are holes. It was shown that doping of p-ErNiSb compound by Sc atoms introduced by substitution of Er atoms in 4a position is accompanied by the occupation of presented vacancies in position 4a, which leads to the reduction and elimination of structural defects of acceptor nature and corresponding acceptor band. The concentration ratio of ionized acceptors and donors generated in Er1-xScxNiSb determines the position of the Fermi level and the mechanisms of electrical conduction. The investigated solid solution Er1-xScxNiSb is a promising thermoelectric material.Методом електродугового плавлення синтезовано зразки твердого розчину Er1-xScxNiSb (х=0–0.10) та досліджено вплив легування атомами Sc на електрокінетичні та енергетичні характеристики фази пів-Гейслера ErNiSb за температур 80–400 К. Встановлено, що за досліджених концентрацій Er1-xScxNiSb основними носіями електрики в напівпровіднику є дірки. Показано, що легування р-ErNiSb атомами Sc шляхом заміщення у позиції 4а атомів Er супроводжується зайняттям ними наявних вакансій у позиції 4а, що веде до зменшення та ліквідації структурних дефектів акцепторної природи та відповідної акцепторної зони. При цьому у позиції 4а генеруються структурні дефекти донорної природи та з’являється домішкова донорна зона. Співвідношення генерованих іонізованих акцепторів і донорів визначає положення рівня Фермі та механізми електропровідності Er1-xScxNiSb. Досліджений твердий розчин Er1-xScxNiSb є перспективним термоелектричним матеріалом

    Peculiarities of structural, electrokinetic, energetic, and magnetic properties semiconductive solid solution Lu1-xVxNiSb

    Get PDF
    The structural, electrokinetic, energetic, and magnetic properties of the new semiconductive solid solution Lu1-xVxNiSb, х=0–0.10, were studied. It was shown that V atoms could simultaneously occupy different crystallographic positions in different ratios, generating structural defects of acceptor and donor nature. This creates corresponding acceptor and donor bands in the bandgap εg of Lu1-xVxNiSb. The mechanism of the formation of two acceptor bands with different depths of occurrence has been established: a small acceptor band εА2, formed by defects due to the substitution of Ni atoms by V ones in the 4c position, and band εА1, generated by vacancies in the LuNiSb structure. The ratio of the concentrations of generated defects determines the position of the Fermi level εF and the conduction mechanisms. The investigated solid solution Lu1-xVxNiSb is a promising thermoelectric material

    Моделювання структурних та енергетичних параметрів напівпровідника р-Er1-xScxNiSb

    Get PDF
    The energy expediency of the existence of Er1-xScxNiSb substitutional solid solution up to the concentration x≈0.10 was established by modeling the variation of free energy ΔG(x) values (Helmholtz potential). At higher Sc concentrations, x&gt; 0.10, there is stratification (spinoidal decomposition of phase). It is shown that in the structure of p-ErNiSb semiconductor there are vacancies in positions 4a and 4c of Er and Ni atoms, respectively, generating structural defects of acceptor nature. The number of vacancies in position 4a is twice less than in position 4c. This ratio also remains for p-Er1-xScxNiSb. Doping of p-ErNiSb semiconductor by Sc atoms by substitution of Er atoms is also accompanied by the occupation of vacancies in position 4a. In this case, Ni atoms occupy vacancies in position 4c, which can be accompanied by the process of ordering the p-Er1-xScxNiSb structure. Occupation of vacancies by Sc and Ni atoms leads to an increase of the concentration of free electrons, an enlarge of the compensation degree of semiconductor, which changes the position of the Fermi level εF and the mechanisms of electrical conductivity.Моделюванням зміни значень вільної енергії ΔG(х) (потенціал Гельмгольца) встановлено енергетичну доцільність існування твердого розчину заміщення Er1-xScxNiSb до концентрації х≈0.10. За більших концентрацій Sc, х&gt;0.10, має місце розшарування (спіноїдальний розпад фази). Показано, що у структурі напівпровідника р-ErNiSb присутні вакансії у позиціях 4а та 4с атомів Er та Ni відповідно, генеруючи структурні дефекти акцепторної природи. Число вакансій у позиції 4a є вдвічі меншою, ніж у позиції 4c. Дана пропорція збережена і для р-Er1-xScxNiSb. Легування р-ErNiSb домішкою Sc шляхом заміщення атомів Er супроводжується також зайняттям ними вакансій у позиції 4a. При цьому атоми Ni займають вакансії у позиції 4c, що може супроводжуватися процесом упорядкування структури р-Er1-xScxNiSb. Зайняття атомами Sc та Ni вакансій приводить до збільшення концентрації вільних електронів, росту ступеню компенсації напівпровідника, що змінює положення рівня Фермі &nbsp;та механізми електропровідності
    corecore