287 research outputs found
Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation
Electrolyte reduction products form the solid-electrolyte interphase (SEI) on
negative electrodes of lithium-ion batteries. Even though this process
practically stabilizes the electrode-electrolyte interface, it results in
continued capacity-fade limiting lifetime and safety of lithium-ion batteries.
Recent atomistic and continuum theories give new insights into the growth of
structures and the transport of ions in the SEI. The diffusion of neutral
radicals has emerged as a prominent candidate for the long-term growth
mechanism, because it predicts the observed potential dependence of SEI growth.Comment: 8 pages, 4 figure
Modeling Nucleation and Growth of Zinc Oxide During Discharge of Primary Zinc-Air Batteries
Metal-air batteries are among the most promising next-generation energy
storage devices. Relying on abundant materials and offering high energy
densities, potential applications lie in the fields of electro-mobility,
portable electronics, and stationary grid applications. Now, research on
secondary zinc-air batteries is revived, which are commercialized as primary
hearing aid batteries. One of the main obstacles for making zinc-air batteries
rechargeable is their poor lifetime due to the degradation of alkaline
electrolyte in contact with atmospheric carbon dioxide. In this article, we
present a continuum theory of a commercial Varta PowerOne button cell. Our
model contains dissolution of zinc and nucleation and growth of zinc oxide in
the anode, thermodynamically consistent electrolyte transport in porous media,
and multi-phase coexistance in the gas diffusion electrode. We perform
electrochemical measurements and validate our model. Excellent agreement
between theory and experiment is found and novel insights into the role of zinc
oxide nucleation and growth and carbon dioxide dissolution for discharge and
lifetime is presented. We demonstrate the implications of our work for the
development of rechargeable zinc-air batteries.Comment: 16 pages, 8 figures, Supplementary Information uploaded as ancillary
fil
Modelling and Simulation of Zinc-Air Batteries with Aqueous Electrolytes
Primary zinc-air batteries have long been an industry standard for low-power applications like hearing aids. Their high theoretical specific energy (1086 Wh â kg-1), use of cheap and non-hazardous materials, and superior operational safety make secondary zinc-air batteries desirable for emerging markets such as electric vehicles or grid storage. But effects including poor cycling stability of the anode, carbonate formation in the alkaline electrolyte, and the lack of a suitable bi-functional air catalyst have limited their use. The Horizon 2020 project Zinc Air Secondary (ZAS!) aims to develop a high-performance rechargeable zinc-air battery capable of achieving more than 1000 cycles. Modelling and simulation of novel cell materials and architectures provides crucial support towards achieving this goal.
We have developed a 1D finite volume continuum model implemented in MATLAB. Our model includes a thermodynamically consistent description of mass transport in concentrated ternary electrolytes, multi-phase coexistence in porous media, and reaction kinetics with considerations for anode passivation due to types I and II ZnO, among other effects. Within this framework, we simulate cell performance and lifetime considering various material com-positions and cell architectures.
Initial results show that inhomogeneous Zn dissolution and ZnO precipitation in 32 wt% KOH may lead to significant mass transport limitations, particularly at higher current densi-ties. Furthermore, under certain operating conditions type II ZnO may form on the zinc elec-trode surface, permanently shutting down the cell. To address these issues and improve overall performance the effect
Modellierung und Simulation PrimÀrer Zink-Luft-Knopfzellen
PrimĂ€re Zink-Luft-Knopfzellen werden bereits erfolgreich in HörgerĂ€ten eingesetzt. FĂŒr
Anwendungen in portablen GerÀten, sowie im Rahmen der ElektromobilitÀt und der
Energiewende, werden allerdings elektrisch wiederaufladbare Energiespeicher benötigt,
weshalb an sekundÀren Zink-Luft-Zellen geforscht wird. Diese haben allerdings zum
aktuellen Stand der Forschung noch eine sehr geringe Lebensdauer.
In dieser Arbeit stellen wir ein thermodynamisch konsistentes, eindimensionales Modell
fĂŒr die TransportvorgĂ€nge in Zink-Luft-Knopfzellen, unter BerĂŒcksichtigung der
Reaktionen und porösen Elektroden, auf.
Die Modellgleichungen diskretisieren wir mit der Finite-Volumen-Methode und implementieren
diese in Matlab und erhalten so eine Simulation der Zelle. Wir rechtfertigen
unsere Ortsdiskretisierung durch eine FehlerabschÀtzung, die auf Dreiecksgittern auch
in zwei Dimensionen gilt. Die Zeitschritte berechnen wir mit dem Solver ode15i. Um
dieses Verfahren numerisch zu validieren, berechnen wir die experimentelle Konvergenzordnung
an Hand der WĂ€rmeleitungsgleichung als Testproblem.
Wir untersuchen das Entladeverhalten von Zink-Luft-Knopfzellen bei konstanter StromstÀrke
experimentell und vergleichen die Resultate mit denen unserer Simulation. Durch
die Analyse der Ergebnisse erhalten wir einen guten Einblick in die Prozesse beim Entladevorgang
in der Batterie.
AuĂerdem untersuchen wir die Selbstentladung der Zelle durch die Wechselwirkung
mit Kohlendioxid aus der Luft experimentell und fĂŒhren eine entsprechende Simulation
durch. Die Ergebnisse stimmen qualitativ gut ĂŒberein und liefern eine Aussage ĂŒber
die Lebensdauer der Zelle
Localization of cold atoms in state-dependent optical lattices via a Rabi pulse
We propose a novel realization of Anderson localization in non-equilibrium
states of ultracold atoms trapped in state-dependent optical lattices. The
disorder potential leading to localization is generated with a Rabi pulse
transfering a fraction of the atoms into a different internal state for which
tunneling between lattice sites is suppressed. Atoms with zero tunneling create
a quantum superposition of different random potentials, localizing the mobile
atoms. We investigate the dynamics of the mobile atoms after the Rabi pulse for
non-interacting and weakly interacting bosons, and we show that the evolved
wavefunction attains a quasi-stationary profile with exponentially decaying
tails, characteristic of Anderson localization. The localization length is seen
to increase with increasing disorder and interaction strength, oppositely to
what is expected for equilibrium localization.Comment: 4 pages, 4 figure
- âŠ