287 research outputs found

    Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation

    Get PDF
    Electrolyte reduction products form the solid-electrolyte interphase (SEI) on negative electrodes of lithium-ion batteries. Even though this process practically stabilizes the electrode-electrolyte interface, it results in continued capacity-fade limiting lifetime and safety of lithium-ion batteries. Recent atomistic and continuum theories give new insights into the growth of structures and the transport of ions in the SEI. The diffusion of neutral radicals has emerged as a prominent candidate for the long-term growth mechanism, because it predicts the observed potential dependence of SEI growth.Comment: 8 pages, 4 figure

    Modeling Nucleation and Growth of Zinc Oxide During Discharge of Primary Zinc-Air Batteries

    Get PDF
    Metal-air batteries are among the most promising next-generation energy storage devices. Relying on abundant materials and offering high energy densities, potential applications lie in the fields of electro-mobility, portable electronics, and stationary grid applications. Now, research on secondary zinc-air batteries is revived, which are commercialized as primary hearing aid batteries. One of the main obstacles for making zinc-air batteries rechargeable is their poor lifetime due to the degradation of alkaline electrolyte in contact with atmospheric carbon dioxide. In this article, we present a continuum theory of a commercial Varta PowerOne button cell. Our model contains dissolution of zinc and nucleation and growth of zinc oxide in the anode, thermodynamically consistent electrolyte transport in porous media, and multi-phase coexistance in the gas diffusion electrode. We perform electrochemical measurements and validate our model. Excellent agreement between theory and experiment is found and novel insights into the role of zinc oxide nucleation and growth and carbon dioxide dissolution for discharge and lifetime is presented. We demonstrate the implications of our work for the development of rechargeable zinc-air batteries.Comment: 16 pages, 8 figures, Supplementary Information uploaded as ancillary fil

    Modelling and Simulation of Zinc-Air Batteries with Aqueous Electrolytes

    Get PDF
    Primary zinc-air batteries have long been an industry standard for low-power applications like hearing aids. Their high theoretical specific energy (1086 Wh ∙ kg-1), use of cheap and non-hazardous materials, and superior operational safety make secondary zinc-air batteries desirable for emerging markets such as electric vehicles or grid storage. But effects including poor cycling stability of the anode, carbonate formation in the alkaline electrolyte, and the lack of a suitable bi-functional air catalyst have limited their use. The Horizon 2020 project Zinc Air Secondary (ZAS!) aims to develop a high-performance rechargeable zinc-air battery capable of achieving more than 1000 cycles. Modelling and simulation of novel cell materials and architectures provides crucial support towards achieving this goal. We have developed a 1D finite volume continuum model implemented in MATLAB. Our model includes a thermodynamically consistent description of mass transport in concentrated ternary electrolytes, multi-phase coexistence in porous media, and reaction kinetics with considerations for anode passivation due to types I and II ZnO, among other effects. Within this framework, we simulate cell performance and lifetime considering various material com-positions and cell architectures. Initial results show that inhomogeneous Zn dissolution and ZnO precipitation in 32 wt% KOH may lead to significant mass transport limitations, particularly at higher current densi-ties. Furthermore, under certain operating conditions type II ZnO may form on the zinc elec-trode surface, permanently shutting down the cell. To address these issues and improve overall performance the effect

    Modellierung und Simulation PrimÀrer Zink-Luft-Knopfzellen

    Get PDF
    PrimĂ€re Zink-Luft-Knopfzellen werden bereits erfolgreich in HörgerĂ€ten eingesetzt. FĂŒr Anwendungen in portablen GerĂ€ten, sowie im Rahmen der ElektromobilitĂ€t und der Energiewende, werden allerdings elektrisch wiederaufladbare Energiespeicher benötigt, weshalb an sekundĂ€ren Zink-Luft-Zellen geforscht wird. Diese haben allerdings zum aktuellen Stand der Forschung noch eine sehr geringe Lebensdauer. In dieser Arbeit stellen wir ein thermodynamisch konsistentes, eindimensionales Modell fĂŒr die TransportvorgĂ€nge in Zink-Luft-Knopfzellen, unter BerĂŒcksichtigung der Reaktionen und porösen Elektroden, auf. Die Modellgleichungen diskretisieren wir mit der Finite-Volumen-Methode und implementieren diese in Matlab und erhalten so eine Simulation der Zelle. Wir rechtfertigen unsere Ortsdiskretisierung durch eine FehlerabschĂ€tzung, die auf Dreiecksgittern auch in zwei Dimensionen gilt. Die Zeitschritte berechnen wir mit dem Solver ode15i. Um dieses Verfahren numerisch zu validieren, berechnen wir die experimentelle Konvergenzordnung an Hand der WĂ€rmeleitungsgleichung als Testproblem. Wir untersuchen das Entladeverhalten von Zink-Luft-Knopfzellen bei konstanter StromstĂ€rke experimentell und vergleichen die Resultate mit denen unserer Simulation. Durch die Analyse der Ergebnisse erhalten wir einen guten Einblick in die Prozesse beim Entladevorgang in der Batterie. Außerdem untersuchen wir die Selbstentladung der Zelle durch die Wechselwirkung mit Kohlendioxid aus der Luft experimentell und fĂŒhren eine entsprechende Simulation durch. Die Ergebnisse stimmen qualitativ gut ĂŒberein und liefern eine Aussage ĂŒber die Lebensdauer der Zelle

    Localization of cold atoms in state-dependent optical lattices via a Rabi pulse

    Full text link
    We propose a novel realization of Anderson localization in non-equilibrium states of ultracold atoms trapped in state-dependent optical lattices. The disorder potential leading to localization is generated with a Rabi pulse transfering a fraction of the atoms into a different internal state for which tunneling between lattice sites is suppressed. Atoms with zero tunneling create a quantum superposition of different random potentials, localizing the mobile atoms. We investigate the dynamics of the mobile atoms after the Rabi pulse for non-interacting and weakly interacting bosons, and we show that the evolved wavefunction attains a quasi-stationary profile with exponentially decaying tails, characteristic of Anderson localization. The localization length is seen to increase with increasing disorder and interaction strength, oppositely to what is expected for equilibrium localization.Comment: 4 pages, 4 figure
    • 

    corecore