533 research outputs found
Hypertableau Reasoning for Description Logics
We present a novel reasoning calculus for the description logic SHOIQ^+---a
knowledge representation formalism with applications in areas such as the
Semantic Web. Unnecessary nondeterminism and the construction of large models
are two primary sources of inefficiency in the tableau-based reasoning calculi
used in state-of-the-art reasoners. In order to reduce nondeterminism, we base
our calculus on hypertableau and hyperresolution calculi, which we extend with
a blocking condition to ensure termination. In order to reduce the size of the
constructed models, we introduce anywhere pairwise blocking. We also present an
improved nominal introduction rule that ensures termination in the presence of
nominals, inverse roles, and number restrictions---a combination of DL
constructs that has proven notoriously difficult to handle. Our implementation
shows significant performance improvements over state-of-the-art reasoners on
several well-known ontologies
Practical Reasoning for Very Expressive Description Logics
Description Logics (DLs) are a family of knowledge representation formalisms
mainly characterised by constructors to build complex concepts and roles from
atomic ones. Expressive role constructors are important in many applications,
but can be computationally problematical. We present an algorithm that decides
satisfiability of the DL ALC extended with transitive and inverse roles and
functional restrictions with respect to general concept inclusion axioms and
role hierarchies; early experiments indicate that this algorithm is well-suited
for implementation. Additionally, we show that ALC extended with just
transitive and inverse roles is still in PSPACE. We investigate the limits of
decidability for this family of DLs, showing that relaxing the constraints
placed on the kinds of roles used in number restrictions leads to the
undecidability of all inference problems. Finally, we describe a number of
optimisation techniques that are crucial in obtaining implementations of the
decision procedures, which, despite the worst-case complexity of the problem,
exhibit good performance with real-life problems
Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality
Materialisation precomputes all consequences of a set of facts and a datalog
program so that queries can be evaluated directly (i.e., independently from the
program). Rewriting optimises materialisation for datalog programs with
equality by replacing all equal constants with a single representative; and
incremental maintenance algorithms can efficiently update a materialisation for
small changes in the input facts. Both techniques are critical to practical
applicability of datalog systems; however, we are unaware of an approach that
combines rewriting and incremental maintenance. In this paper we present the
first such combination, and we show empirically that it can speed up updates by
several orders of magnitude compared to using either rewriting or incremental
maintenance in isolation.Comment: All proofs contained in the appendix. 7 pages + 4 pages appendix. 7
algorithms and one table with evaluation result
Conjunctive Query Answering for the Description Logic SHIQ
Conjunctive queries play an important role as an expressive query language
for Description Logics (DLs). Although modern DLs usually provide for
transitive roles, conjunctive query answering over DL knowledge bases is only
poorly understood if transitive roles are admitted in the query. In this paper,
we consider unions of conjunctive queries over knowledge bases formulated in
the prominent DL SHIQ and allow transitive roles in both the query and the
knowledge base. We show decidability of query answering in this setting and
establish two tight complexity bounds: regarding combined complexity, we prove
that there is a deterministic algorithm for query answering that needs time
single exponential in the size of the KB and double exponential in the size of
the query, which is optimal. Regarding data complexity, we prove containment in
co-NP
Optimisation of Terminological Reasoning
When reasoning in description, modal or temporal logics it is often useful to consider axioms representing universal truths in the domain of discourse. Reasoning with respect to an arbitrary set of axioms is hard, even for relatively inexpressive logics, and it is essential to deal with such axioms in an efficient manner if implemented systems are to be effective in real applications. This is particularly relevant to Description Logics, where subsumption reasoning with respect to a terminology is a fundamental problem. Two optimisation techniques that have proved to be particularly effective in dealing with terminologies are lazy unfolding and absorption. In this paper we seek to improve our theoretical understanding of these important techniques. We define a formal framework that allows the techniques to be precisely described, establish conditions under which they can be safely applied, and prove that, provided these conditions are respected, subsumption testing algorithms will still function correctly. These results are used to show that the procedures used in the FaCT system are correct and, moreover, to show how effiency an be significantly improved, while still retaining the guarantee of
correctness, by relaxing the safety conditions for absorption.An extended abstract of this report was submitted to the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR2000)
Knowledge-based Transfer Learning Explanation
Machine learning explanation can significantly boost machine learning's
application in decision making, but the usability of current methods is limited
in human-centric explanation, especially for transfer learning, an important
machine learning branch that aims at utilizing knowledge from one learning
domain (i.e., a pair of dataset and prediction task) to enhance prediction
model training in another learning domain. In this paper, we propose an
ontology-based approach for human-centric explanation of transfer learning.
Three kinds of knowledge-based explanatory evidence, with different
granularities, including general factors, particular narrators and core
contexts are first proposed and then inferred with both local ontologies and
external knowledge bases. The evaluation with US flight data and DBpedia has
presented their confidence and availability in explaining the transferability
of feature representation in flight departure delay forecasting.Comment: Accepted by International Conference on Principles of Knowledge
Representation and Reasoning, 201
- …