1,348 research outputs found
Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum
Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex
"No-Till" Farming Is a Growing Practice
Most U.S. farmers prepare their soil for seeding and weed and pest control through tillage—plowing operations that disturb the soil. Tillage practices affect soil carbon, water pollution, and farmers’ energy and pesticide use, and therefore data on tillage can be valuable for understanding the practice’s role in reaching climate and other environmental goals. In order to help policymakers and other interested parties better understand U.S. tillage practices and, especially, those practices’ potential contribution to climate-change efforts, ERS researchers compiled data from the Agricultural Resource Management Survey and the National Resources Inventory-Conservation Effects Assessment Project’s Cropland Survey. The data show that approximately 35.5 percent of U.S. cropland planted to eight major crops, or 88 million acres, had no tillage operations in 2009.Tillage, no-till, Agricultural Resource Management Survey, ARMS, U.S. crop practices, National Resources Inventory-Conservation Effects Assessment Project, NRI-CEAP, carbon baseline, carbon sequestration, Environmental Economics and Policy, Farm Management, Land Economics/Use, Resource /Energy Economics and Policy, Risk and Uncertainty,
Contours of Inclusion: Frameworks and Tools for Evaluating Arts in Education
This collection of essays explores various arts education-specific evaluation tools, as well as considers Universal Design for Learning (UDL) and the inclusion of people with disabilities in the design of evaluation instruments and strategies. Prominent evaluators Donna M. Mertens, Robert Horowitz, Dennie Palmer Wolf, and Gail Burnaford are contributors to this volume. The appendix includes the AEA Standards for Evaluation. (Contains 10 tables, 2 figures, 30 footnotes, and resources for additional reading.) This is a proceedings document from the 2007 VSA arts Research Symposium that preceded the American Evaluation Association's (AEA) annual meeting in Baltimore, MD
The Value of Singularities
We point out that spacetime singularities play a useful role in gravitational
theories by eliminating unphysical solutions. In particular, we argue that any
modification of general relativity which is completely nonsingular cannot have
a stable ground state. This argument applies both to classical extensions of
general relativity, and to candidate quantum theories of gravity.Comment: 5 pages, no figures; a few clarifying comments adde
A note on spherically symmetric naked singularities in general dimension
We discuss generalizations of the recent theorem by Dafermos (hep-th/0403033)
forbidding a certain class of naked singularities in the spherical collapse of
a scalar field. Employing techniques similar to the ones Dafermos used, we
consider extending the theorem (1) to higher dimensions, (2) by including more
general matter represented by a stress-energy tensor satisfying certain
assumptions, and (3) by replacing the spherical geometry by a toroidal or
higher genus (locally hyperbolic) one. We show that the extension to higher
dimensions and a more general topology is straightforward; on the other hand,
replacing the scalar field by a more general matter content forces us to shrink
the class of naked singularities we are able to exclude. We then show that the
most common matter theories (scalar field interacting with a non-abelian gauge
field and a perfect fluid satisfying certain conditions) obey the assumptions
of our weaker theorem, and we end by commenting on the applicability of our
results to the five-dimensional AdS scenarii considered recently in the
literature.Comment: 16 pages, no figures, typos fixe
Theorems on gravitational time delay and related issues
Two theorems related to gravitational time delay are proven. Both theorems
apply to spacetimes satisfying the null energy condition and the null generic
condition. The first theorem states that if the spacetime is null geodesically
complete, then given any compact set , there exists another compact set
such that for any , if there exists a ``fastest null
geodesic'', , between and , then cannot enter . As
an application of this theorem, we show that if, in addition, the spacetime is
globally hyperbolic with a compact Cauchy surface, then any observer at
sufficiently late times cannot have a particle horizon. The second theorem
states that if a timelike conformal boundary can be attached to the spacetime
such that the spacetime with boundary satisfies strong causality as well as a
compactness condition, then any ``fastest null geodesic'' connecting two points
on the boundary must lie entirely within the boundary. It follows from this
theorem that generic perturbations of anti-de Sitter spacetime always produce a
time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected.
Two footnotes added and one footnote remove
Wavy Strings: Black or Bright?
Recent developments in string theory have brought forth a considerable
interest in time-dependent hair on extended objects. This novel new hair is
typically characterized by a wave profile along the horizon and angular
momentum quantum numbers in the transverse space. In this work, we
present an extensive treatment of such oscillating black objects, focusing on
their geometric properties. We first give a theorem of purely geometric nature,
stating that such wavy hair cannot be detected by any scalar invariant built
out of the curvature and/or matter fields. However, we show that the tidal
forces detected by an infalling observer diverge at the `horizon' of a black
string superposed with a vibration in any mode with . The same
argument applied to longitudinal () waves detects only finite tidal
forces. We also provide an example with a manifestly smooth metric, proving
that at least a certain class of these longitudinal waves have regular
horizons.Comment: 45 pages, latex, no figure
Evaluation Of Glueball Masses From Supergravity
In the framework of the conjectured duality relation between large gauge
theory and supergravity the spectra of masses in large gauge theory can be
determined by solving certain eigenvalue problems in supergravity. In this
paper we study the eigenmass problem given by Witten as a possible
approximation for masses in QCD without supersymmetry. We place a particular
emphasis on the treatment of the horizon and related boundary conditions. We
construct exact expressions for the analytic expansions of the wave functions
both at the horizon and at infinity and show that requiring smoothness at the
horizon and normalizability gives a well defined eigenvalue problem. We show
for example that there are no smooth solutions with vanishing derivative at the
horizon. The mass eigenvalues up to corresponding to smooth
normalizable wave functions are presented. We comment on the relation of our
work with the results found in a recent paper by Cs\'aki et al.,
hep-th/9806021, which addresses the same problem.Comment: 20 pages,Latex,3 figs,psfig.tex, added refs., minor change
Cosmic Censorship: As Strong As Ever
Spacetimes which have been considered counter-examples to strong cosmic
censorship are revisited. We demonstrate the classical instability of the
Cauchy horizon inside charged black holes embedded in de Sitter spacetime for
all values of the physical parameters. The relevant modes which maintain the
instability, in the regime which was previously considered stable, originate as
outgoing modes near to the black hole event horizon. This same mechanism is
also relevant for the instability of Cauchy horizons in other proposed
counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi
Holographic studies of quasi-topological gravity
Quasi-topological gravity is a new gravitational theory including
curvature-cubed interactions and for which exact black hole solutions were
constructed. In a holographic framework, classical quasi-topological gravity
can be thought to be dual to the large limit of some non-supersymmetric
but conformal gauge theory. We establish various elements of the AdS/CFT
dictionary for this duality. This allows us to infer physical constraints on
the couplings in the gravitational theory. Further we use holography to
investigate hydrodynamic aspects of the dual gauge theory. In particular, we
find that the minimum value of the shear-viscosity-to-entropy-density ratio for
this model is .Comment: 45 pages, 6 figures. v2: References adde
- …
