12 research outputs found
Semidefinite Relaxations for Stochastic Optimal Control Policies
Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation
have led to the discovery of a formulation of the value function as a linear
Partial Differential Equation (PDE) for stochastic nonlinear systems with a
mild constraint on their disturbances. This has yielded promising directions
for research in the planning and control of nonlinear systems. This work
proposes a new method obtaining approximate solutions to these linear
stochastic optimal control (SOC) problems. A candidate polynomial with variable
coefficients is proposed as the solution to the SOC problem. A Sum of Squares
(SOS) relaxation is then taken to the partial differential constraints, leading
to a hierarchy of semidefinite relaxations with improving sub-optimality gap.
The resulting approximate solutions are shown to be guaranteed over- and
under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in
Portland, Oregon. 7 pages, colo
Optimal Navigation Functions for Nonlinear Stochastic Systems
This paper presents a new methodology to craft navigation functions for
nonlinear systems with stochastic uncertainty. The method relies on the
transformation of the Hamilton-Jacobi-Bellman (HJB) equation into a linear
partial differential equation. This approach allows for optimality criteria to
be incorporated into the navigation function, and generalizes several existing
results in navigation functions. It is shown that the HJB and that existing
navigation functions in the literature sit on ends of a spectrum of
optimization problems, upon which tradeoffs may be made in problem complexity.
In particular, it is shown that under certain criteria the optimal navigation
function is related to Laplace's equation, previously used in the literature,
through an exponential transform. Further, analytical solutions to the HJB are
available in simplified domains, yielding guidance towards optimality for
approximation schemes. Examples are used to illustrate the role that noise, and
optimality can potentially play in navigation system design.Comment: Accepted to IROS 2014. 8 Page
Domain Decomposition for Stochastic Optimal Control
This work proposes a method for solving linear stochastic optimal control
(SOC) problems using sum of squares and semidefinite programming. Previous work
had used polynomial optimization to approximate the value function, requiring a
high polynomial degree to capture local phenomena. To improve the scalability
of the method to problems of interest, a domain decomposition scheme is
presented. By using local approximations, lower degree polynomials become
sufficient, and both local and global properties of the value function are
captured. The domain of the problem is split into a non-overlapping partition,
with added constraints ensuring continuity. The Alternating Direction
Method of Multipliers (ADMM) is used to optimize over each domain in parallel
and ensure convergence on the boundaries of the partitions. This results in
improved conditioning of the problem and allows for much larger and more
complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201
Linear Hamilton Jacobi Bellman Equations in High Dimensions
The Hamilton Jacobi Bellman Equation (HJB) provides the globally optimal
solution to large classes of control problems. Unfortunately, this generality
comes at a price, the calculation of such solutions is typically intractible
for systems with more than moderate state space size due to the curse of
dimensionality. This work combines recent results in the structure of the HJB,
and its reduction to a linear Partial Differential Equation (PDE), with methods
based on low rank tensor representations, known as a separated representations,
to address the curse of dimensionality. The result is an algorithm to solve
optimal control problems which scales linearly with the number of states in a
system, and is applicable to systems that are nonlinear with stochastic forcing
in finite-horizon, average cost, and first-exit settings. The method is
demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with
system dimension two, six, and twelve respectively.Comment: 8 pages. Accepted to CDC 201
A Convex Approach to Consensus on SO(n)
This paper introduces several new algorithms for consensus over the special
orthogonal group. By relying on a convex relaxation of the space of rotation
matrices, consensus over rotation elements is reduced to solving a convex
problem with a unique global solution. The consensus protocol is then
implemented as a distributed optimization using (i) dual decomposition, and
(ii) both semi and fully distributed variants of the alternating direction
method of multipliers technique -- all with strong convergence guarantees. The
convex relaxation is shown to be exact at all iterations of the dual
decomposition based method, and exact once consensus is reached in the case of
the alternating direction method of multipliers. Further, analytic and/or
efficient solutions are provided for each iteration of these distributed
computation schemes, allowing consensus to be reached without any online
optimization. Examples in satellite attitude alignment with up to 100 agents,
an estimation problem from computer vision, and a rotation averaging problem on
validate the approach.Comment: Accepted to 52nd Annual Allerton Conference on Communication,
Control, and Computin
Linearly Solvable Stochastic Control Lyapunov Functions
This paper presents a new method for synthesizing stochastic control Lyapunov
functions for a class of nonlinear stochastic control systems. The technique
relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman
partial differential equation to a linear partial differential equation for a
class of problems with a particular constraint on the stochastic forcing. This
linear partial differential equation can then be relaxed to a linear
differential inclusion, allowing for relaxed solutions to be generated using
sum of squares programming. The resulting relaxed solutions are in fact
viscosity super/subsolutions, and by the maximum principle are pointwise upper
and lower bounds to the underlying value function, even for coarse polynomial
approximations. Furthermore, the pointwise upper bound is shown to be a
stochastic control Lyapunov function, yielding a method for generating
nonlinear controllers with pointwise bounded distance from the optimal cost
when using the optimal controller. These approximate solutions may be computed
with non-increasing error via a hierarchy of semidefinite optimization
problems. Finally, this paper develops a-priori bounds on trajectory
suboptimality when using these approximate value functions, as well as
demonstrates that these methods, and bounds, can be applied to a more general
class of nonlinear systems not obeying the constraint on stochastic forcing.
Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio
Convex Relaxations of SE(2) and SE(3) for Visual Pose Estimation
This paper proposes a new method for rigid body pose estimation based on
spectrahedral representations of the tautological orbitopes of and
. The approach can use dense point cloud data from stereo vision or an
RGB-D sensor (such as the Microsoft Kinect), as well as visual appearance data.
The method is a convex relaxation of the classical pose estimation problem, and
is based on explicit linear matrix inequality (LMI) representations for the
convex hulls of and . Given these representations, the relaxed
pose estimation problem can be framed as a robust least squares problem with
the optimization variable constrained to these convex sets. Although this
formulation is a relaxation of the original problem, numerical experiments
indicate that it is indeed exact - i.e. its solution is a member of or
- in many interesting settings. We additionally show that this method
is guaranteed to be exact for a large class of pose estimation problems.Comment: ICRA 2014 Preprin
Suboptimal stabilizing controllers for linearly solvable system
This paper presents a novel method to synthesize stochastic control Lyapunov functions for a class of nonlinear, stochastic control systems. In this work, the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation is transformed into a linear partial differential equation for a class of systems with a particular constraint on the stochastic disturbance. It is shown that this linear partial differential equation can be relaxed to a linear differential inclusion, allowing for approximating polynomial solutions to be generated using sum of squares programming. It is shown that the resulting solutions are stochastic control Lyapunov functions with a number of compelling properties. In particular, a-priori bounds on trajectory suboptimality are shown for these approximate value functions. The result is a technique whereby approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems
Convex Model Predictive Control for Vehicular Systems
In this work, we present a method to perform Model Predictive Control (MPC)
over systems whose state is an element of for . This is done
without charts or any local linearization, and instead is performed by
operating over the orbitope of rotation matrices. This results in a novel MPC
scheme without the drawbacks associated with conventional linearization
techniques. Instead, second order cone- or semidefinite-constraints on state
variables are the only requirement beyond those of a QP-scheme typical for MPC
of linear systems. Of particular emphasis is the application to aeronautical
and vehicular systems, wherein the method removes many of the transcendental
trigonometric terms associated with these systems' state space equations.
Furthermore, the method is shown to be compatible with many existing variants
of MPC, including obstacle avoidance via Mixed Integer Linear Programming
(MILP)
Resilience in Large Scale Distributed Systems
Distributed systems are comprised of multiple subsystems that interact in two distinct ways: (1) physical interactions and (2) cyber interactions; i.e. sensors, actuators and computers controlling these subsystems, and the network over which they communicate. A broad class of cyber-physical systems (CPS) are described by such interactions, such as the smart grid, platoons of autonomous vehicles and the sensorimotor system. This paper will survey recent progress in developing a coherent mathematical framework that describes the rich CPS “design space” of fundamental limits and tradeoffs between efficiency, robustness, adaptation, verification and scalability. Whereas most research treats at most one of these issues, we attempt a holistic approach in examining these metrics. In particular, we will argue that a control architecture that emphasizes scalability leads to improvements in robustness, adaptation, and verification, all the while having only minor effects on efficiency – i.e. through the choice of a new architecture, we believe that we are able to bring a system closer to the true fundamental hard limits of this complex design space