59 research outputs found
Recommended from our members
IFNL3 (IL28B) favorable genotype escapes hepatitis C virus-induced microRNAs and mRNA decay
The IFNL3 (IL28B) gene has received immense attention in the hepatitis C virus (HCV) field as multiple independent genome-wide association studies identified a strong association between polymorphisms near the IFNL3 gene and HCV clearance. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) located in the 3′ untranslated region (3′ UTR) of the IFNL3 mRNA that dictates transcript stability. This polymorphism influences AU-rich element-mediated decay as well as the binding of HCV-induced microRNAs during infection. Together, these pathways mediate robust repression of the unfavorable IFNL3 genotype. These data reveal a novel mechanism by which HCV attenuates the antiviral response and uncover new potential therapeutic targets for HCV treatment
Convergent Evolution of Escape from Hepaciviral Antagonism in Primates
Escape from antagonism by hepatitis C and related viruses has repeatedly evolved in antiviral factor MAVS via convergent evolution, revealing an ancient history of previous viral encounters in primates
Recommended from our members
Virology—the path forward
In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme
The acidic domain of the hepatitis C virus NS4A protein is required for viral assembly and envelopment through interactions with the viral E1 glycoprotein.
Hepatitis C virus (HCV) assembly and envelopment are coordinated by a complex protein interaction network that includes most of the viral structural and nonstructural proteins. While the nonstructural protein 4A (NS4A) is known to be important for viral particle production, the specific function of NS4A in this process is not well understood. We performed mutagenesis of the C-terminal acidic domain of NS4A and found that mutation of several of these amino acids prevented the formation of the viral envelope, and therefore the production of infectious virions, without affecting viral RNA replication. In an overexpression system, we found that NS4A interacted with several viral proteins known to coordinate envelopment, including the viral E1 glycoprotein. One of the NS4A C-terminal mutations, Y45F, disrupted the interaction of NS4A with E1. Specifically, NS4A interacted with the first hydrophobic region of E1, a region previously described as regulating viral particle production. Indeed, we found that an E1 mutation in this region, D72A, also disrupted the interaction of NS4A with E1. Supernatants from HCV NS4A Y45F transfected cells had significantly reduced levels of HCV RNA, however they contained equivalent levels of Core protein. Interestingly, the Core protein secreted from these cells formed high order oligomers with a density matching the infectious virus secreted from wild-type cells. These results suggest that this Y45F mutation in NS4A causes secretion of low-density Core particles lacking genomic HCV RNA. These results corroborate previous findings showing that the E1 D72A mutation also causes secretion of Core complexes lacking genomic HCV RNA, and therefore suggest that the interaction between NS4A and E1 is involved in the incorporation of viral RNA into infectious HCV particles. Our findings define a new role for NS4A in the HCV lifecycle and help elucidate the protein interactions necessary for production of infectious virus
Properties of HCV direct-acting antivirals.
<p>Properties of HCV direct-acting antivirals.</p
Sustained virologic response for all-oral direct acting antiviral regimens.
<p><sup>+</sup>Interferon ineligible/intolerant;</p><p>*24 weeks of treatment; GT1 (a/b), genotype-1; GT2, genotype-2; GT3, genotype-3; N/A, not available</p><p>Sustained virologic response for all-oral direct acting antiviral regimens.</p
- …