14 research outputs found
Dosage-Dependent Phenotypes in Models of Human 16p11.2 Lesions Found in Autism
Recurrent copy number variations (CNVs) of human 16p11.2 have been associated with a variety of developmental/neurocognitive syndromes. In particular, deletion of 16p11.2 is found in patients with autism, developmental delay, and obesity. Patients with deletions or duplications have a wide range of clinical features, and siblings carrying the same deletion often have diverse symptoms. To study the consequence of 16p11.2 CNVs in a systematic manner, we used chromosome engineering to generate mice harboring deletion of the chromosomal region corresponding to 16p11.2, as well as mice harboring the reciprocal duplication. These 16p11.2 CNV models have dosage-dependent changes in gene expression, viability, brain architecture, and behavior. For each phenotype, the consequence of the deletion is more severe than that of the duplication. Of particular note is that half of the 16p11.2 deletion mice die postnatally; those that survive to adulthood are healthy and fertile, but have alterations in the hypothalamus and exhibit a “behavior trap” phenotype—a specific behavior characteristic of rodents with lateral hypothalamic and nigrostriatal lesions. These findings indicate that 16p11.2 CNVs cause brain and behavioral anomalies, providing insight into human neurodevelopmental disorders
N-VEGF, the Autoregulatory Arm of VEGF-A
Vascular endothelial growth factor A (VEGF-A) is a secreted protein that stimulates angiogenesis in response to hypoxia. Under hypoxic conditions, a non-canonical long isoform called L-VEGF is concomitantly expressed with VEGF-A. Once translated, L-VEGF is proteolytically cleaved to generate N-VEGF and VEGF-A. Interestingly, while VEGF-A is secreted and affects the surrounding cells, N-VEGF is mobilized to the nucleus. This suggests that N-VEGF participates in transcriptional response to hypoxia. In this study, we performed a series of complementary experiments to examine the functional role of N-VEGF. Strikingly, we found that the mere expression of N-VEGF followed by its hypoxia-independent mobilization to the nucleus was sufficient to induce key genes associated with angiogenesis, such as Hif1α,VEGF-A isoforms, as well as genes associated with cell survival under hypoxia. Complementarily, when N-VEGF was genetically depleted, key hypoxia-induced genes were downregulated and cells were significantly susceptible to hypoxia-mediated apoptosis. This is the first report of N-VEGF serving as an autoregulatory arm of VEGF-A. Further experiments will be needed to determine the role of N-VEGF in cancer and embryogenesis
Healthcare Service Utilization by 116,816 Patients with Atopic Dermatitis in Israel
Understanding of the epidemiology and healthcare service utilization related to atopic dermatitis is necessary to inform the use of new treatments. This cross-sectional study was based on a group of patients with atopic dermatitis and a matched control group comprised of age- and sex- matched enrolees without atopic dermatitis from a large medical database. Healthcare service utilization usage data were extracted and compared between groups. The study included 116,816 patients with atopic dermatitis and 116,812 controls. Atopic dermatitis was associated with an increased burden of healthcare utilization across the entire spectrum of healthcare services compared with controls. For patients severely affected by atopic dermatitis, the increased burden correlated with disease severity: a highÂer frequency of emergency room visits (odd ratio (OR) 1.7; 95% confidence interval (CI) 1.6–1.9), dermatology wards hospitalizations (OR 315; 95% CI 0–7,342), and overall hospitalizations (OR 3.6; 95% CI 3.3–3.9). In conclusion, this study demonstrates an increased burden of healthcare utilization in atopic dermatitis
Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model
Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully compensate for a lack of SMN1. SMN is important for the biogenesis of spliceosomal small nuclear ribonucleoprotein particles, but downstream splicing targets involved in pathogenesis remain elusive. There is no effective SMA treatment, but SMN restoration in spinal cord motor neurons is thought to be necessary and sufficient. Non-central nervous system (CNS) pathologies, including cardiovascular defects, were recently reported in severe SMA mouse models and patients, reflecting autonomic dysfunction or direct effects in cardiac tissues. Here we compared systemic versus CNS restoration of SMN in a severe mouse model. We used an antisense oligonucleotide (ASO), ASO-10-27, that effectively corrects SMN2 splicing and restores SMN expression in motor neurons after intracerebroventricular injection. Systemic administration of ASO-10-27 to neonates robustly rescued severe SMA mice, much more effectively than intracerebroventricular administration; subcutaneous injections extended the median lifespan by 25 fold. Furthermore, neonatal SMA mice had decreased hepatic Igfals expression, leading to a pronounced reduction in circulating insulin-like growth factor 1 (IGF1), and ASO-10-27 treatment restored IGF1 to normal levels. These results suggest that the liver is important in SMA pathogenesis, underscoring the importance of SMN in peripheral tissues, and demonstrate the efficacy of a promising drug candidate