785 research outputs found
X-ray CT analysis after blast of composite sandwich panels
Four composite sandwich panels with either single density or graded density foam cores and different face-sheet materials were subjected to full-scale underwater blast testing. The panels were subjected to 1kg PE4 charge at a stand-off distance of 1 m. The panel with graded density core and carbon fiber face-sheets had the lowest deflection. Post-blast damage assessment was carried out using X-ray CT scanning. The damage assessment revealed that there is a trade-off between reduced panel deflection and panel damage. This research has been performed as part of a program sponsored by the Office of Naval Research (ONR)
Experimental techniques for ductile damage characterisation
Ductile damage in metallic materials is caused by the nucleation, growth and coalesce of voids and micro-cracks in the metal matrix when it is subjected to plastic strain. A considerable number of models have been proposed to represent ductile failure focusing on the ultimate failure conditions; however, only some of them study in detail the whole damage accumulation process. The aim of this work is to review experimental techniques developed by various authors to measure the accumulation of ductile damage under tensile loads. The measurement methods reviewed include: stiffness degradation, indentation, microstructure analysis, ultrasonic waves propagation, X-ray tomography and electrical potential drop. Stiffness degradation and indentation techniques have been tested on stainless steel 304L hourglass-shaped samples. A special interest is placed in the Continuum Damage Mechanics approach (CDM) as its equations incorporate macroscopic parameters that can represent directly the damage accumulation measured in the experiments. The other main objective lies in identifying the strengths and weaknesses of each technique for the assessment of materials subjected to different strain-rate and temperature conditions
On the blast resistance of laminated glass
AbstractBlast resistant glazing systems typically use laminated glass to reduce the risk of flying glass debris in the event of an explosion. Laminated glass has one or more bonded polymer interlayers to retain glass fragments upon fracture. With good design, the flexibility of the interlayer and the adhesion between layers enable laminated glass to continue to resist blast after the glass layers fracture. This gives protection from significantly higher blast loads when compared to a monolithic pane. Full-scale open-air blast tests were performed on laminated glass containing a polyvinyl butyral (PVB) interlayer. Test windows of size 1.5m×1.2m were secured to robust frames using structural silicone sealant. Blast loads were produced using charge masses of 15kg and 30kg (TNT equivalent) at distances of 10–16m. Deflection and shape measurements of deforming laminated glass were obtained using high-speed digital image correlation. Measurements of loading at the joint, between the laminated glass and the frame, were obtained using strain gauges. The main failure mechanisms observed were the cohesive failure of the bonded silicone joint and delamination between the glass and interlayer at the pane edge. A new finite element model of laminated glass is developed and calibrated using laboratory based tests. Predictions from this model are compared against the experimental results
In situ monitoring of the layer height in laser powder bed fusion
In situ process monitoring has frequently been cited as an critical requirement in certifying the performance of laser powder bed fusion (LPBF) components for use in high integrity applications. Despite much development in addressing this need, little attention has been been paid to monitoring the layer thickness during the process. In this paper, a laser displacement sensor has been integrated into the build chamber of an LPBF machine, and the height of the top surface layer of a component has been monitored during a build. This has permitted the deposited layer thickness to be measured throughout the build, and the effect on this of a change in processing conditions is characterised. The thermal contraction of the top layer in between successive laser scans has also been evaluated. This demonstrates the potential of utilising laser displacement sensory as a process monitoring tool in LPBF and provides insightful data for implementation in detailed process models
Temperature effects on laminated glass at high rate
The load bearing capacity of a laminated glass pane changes with temperature. In blast protection, laminated glass panes with a Polyvinyl Butyral (PVB) interlayer are usually employed. The post-crack response of the laminated pane is determined by the interlayer material response and its bond to the glass plies. An experimental study has been performed to determine the effects of temperature on the post cracked response of laminated glass at a test rate of 1 m/s for PVB thicknesses of 0.76 mm, 1.52 mm and 2.28 mm. Tensile tests were carried out on single cracked and randomly cracked samples in a temperature range of 0 °C–60 °C. Photoelasticity observation and high speed video recording were used to capture the delamination in the single cracked tests. Competing mechanisms of PVB compliance and the adhesion between the glass and PVB, were revealed. The adhesion showed an increase at lower temperatures, but the compliance of the PVB interlayer was reduced. Based on the interlayer thickness range tested, the post-crack response of laminated glass is shown to be thickness dependent
Compressive strength after blast of sandwich composite materials
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast
Determining Material Response for Polyvinyl Butyral (PVB) in Blast Loading Situations
Protecting structures from the effect of blast loads requires the careful design of all building components. In this context, the mechanical properties of Polyvinyl Butyral (PVB) are of interest to designers as the membrane behaviour will affect the performance of laminated glass glazing when loaded by explosion pressure waves. This polymer behaves in a complex manner and is difficult to model over the wide range of strain rates relevant to blast analysis. In this study, data from experimental tests conducted at strain rates from 0.01 s−1 to 400 s−1 were used to develop material models accounting for the rate dependency of the material. Firstly, two models were derived assuming Prony series formulations. A reduced polynomial spring and a spring derived from the model proposed by Hoo Fatt and Ouyang were used. Two fits were produced for each of these models, one for low rate cases, up to 8 s−1, and one for high rate cases, from 20 s−1. Afterwards, a single model representing all rates was produced using a finite deformation viscoelastic model. This assumed two hyperelastic springs in parallel, one of which was in series with a non-linear damper. The results were compared with the experimental results, assessing the quality of the fits in the strain range of interest for blast loading situations. This should provide designers with the information to choose between the available models depending on their design needs
Influence of laser shock peening on the residual stresses in additively manufactured 316L by Laser Powder Bed Fusion: A combined experimental-numerical study
Detrimental subsurface tensile residual stresses occur in laser powder bed fusion (LPBF) due to significant temperature gradients during the process. Besides heat treatments, laser shock peening (LSP) is a promising technology for tailoring residual stress profiles of additively manufactured components. A multi step process simulation is applied aiming at predicting the residual stress state after applying LSP to a cuboid shaped specimen manufactured by LPBF in two different building directions as well as comparing it with a post-build heat treatment. The validity of the numerical simulation is evaluated based on comparisons of residual stresses determined by incremental hole drilling technique within different stages of the multi step process: in the as-build condition, after subsequent heat treatment as well as after applying LSP to the as-build and heat treated specimens, showing overall a good experimental–numerical agreement throughout each of the process stages. Applying a heat treatment to the as-build LPBF sample at 700 °C for 6 h showed not to be effective in eliminating the surface tensile stress entirely, reducing the tensile residual stresses by 40%. However, the application of LSP on LPBF components showed promising results: LSP was able even to convert the detrimental near surface tensile residual stresses in the LPBF component into compressive residual stresses next to the surface, which is known to be beneficial for the fatigue performance
DNA Vaccine-Generated Duck Polyclonal Antibodies as a Postexposure Prophylactic to Prevent Hantavirus Pulmonary Syndrome (HPS)
Andes virus (ANDV) is the predominant cause of hantavirus pulmonary syndrome (HPS) in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35–40%). Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP) from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos). The natural “despeciation" of the duck IgY (i.e., Fc removed) results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥5,000 neutralizing antibody units (NAU)/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT). Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This is the first report demonstrating the in vivo efficacy of any antiviral product produced using DNA vaccine-duck/egg system
- …