26 research outputs found

    Syntheses and Reactions of Derivatives of (Pyrrolylaldiminato)germanium(II) and -Aluminum(III)

    No full text
    (Pyrrolylaldiminato)Ā­germaniumĀ­(II) chloride, LGeCl (<b>1</b>), was prepared by reacting LLi (L = 2-(ArNī—»CH)-5-<i>t</i>BuC<sub>4</sub>H<sub>2</sub>N; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with 1 equiv of GeCl<sub>2</sub>Ā·(dioxane). Treatment of LGeCl (<b>1</b>) with KO<i>t</i>Bu or LiNĀ­(H)Ar yielded LGeR (R = O<i>t</i>Bu (<b>2</b>), NĀ­(H)Ar (<b>3</b>)) by halide metathesis. (Pyrrolylaldiminato)Ā­methylaluminum chloride, LAlMeĀ­(Cl) (<b>4</b>), was obtained from the reaction of LLi and MeAlCl<sub>2</sub> or by treating LH with Me<sub>2</sub>AlCl in toluene. Treatment of LH with Me<sub>2</sub>AlCl or AlCl<sub>3</sub> in Et<sub>2</sub>O at āˆ’18 °C resulted in the 1:1 adducts LHĀ·AlMe<sub>2</sub>Cl (<b>5</b>) and LHĀ·AlCl<sub>3</sub> (<b>5</b>′), respectively. Further reaction of <b>4</b> with 2 equiv of LiNEt<sub>2</sub> led to the insertion of the NEt<sub>2</sub> group into the Cī—»N bond together with the elimination of LiCl, to afford L′(NEt<sub>2</sub>)Ā­AlMeĀ­(NEt<sub>2</sub>)Ā­LiĀ­(THF) (<b>6</b>). Similarly, treatment of <b>4</b> with 2 equiv of LiPPh<sub>2</sub>(THF)<sub>2</sub> gave L′(PPh<sub>2</sub>)Ā­AlMeĀ­(OC<sub>4</sub>H<sub>8</sub>-PPh<sub>2</sub>)Ā­LiĀ­(THF)<sub>2</sub> (<b>7</b>) accompanied by ring opening of THF. Single-crystal X-ray structure determinations revealed that <b>3</b> and <b>4</b> each contained enantiomeric pairs, while <b>6</b> and <b>7</b> each adopted a single enantiomer

    Synthesis and Characterization of Coinage Metal Aluminum Sulfur Species

    No full text
    The synthesis of heterobimetallic cluster with the Al–S–M (M = Cu and Ag) structural unit has been realized for the first time by the reaction of aluminum-dithiol LAlĀ­(SH)<sub>2</sub> (L = HCĀ­[CĀ­(Me)Ā­NĀ­(Ar)]<sub>2</sub>, Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with (MesCu)<sub>4</sub> and (MesAg)<sub>4</sub> (Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>), respectively. The isolated clusters exhibit core structures of Al<sub>2</sub>Cu<sub>4</sub>S<sub>4</sub> and Al<sub>4</sub>Ag<sub>8</sub>S<sub>8</sub>, respectively. During the formation of the [LAlĀ­(SAg)<sub>2</sub>]<sub>4</sub>, a side product of LAlS<sub>6</sub> is formed. However, the reaction of LAlĀ­(SH)<sub>2</sub> with excess of sulfur and (MesAg)<sub>4</sub> resulted in the formation of LAlS<sub>4</sub> as the only product soluble in organic solvents. Both of them represent rare examples of aluminum polysulfides. All compounds were characterized by spectroscopic methods and single crystal X-ray diffraction studies

    Syntheses and Reactions of Derivatives of (Pyrrolylaldiminato)germanium(II) and -Aluminum(III)

    No full text
    (Pyrrolylaldiminato)Ā­germaniumĀ­(II) chloride, LGeCl (<b>1</b>), was prepared by reacting LLi (L = 2-(ArNī—»CH)-5-<i>t</i>BuC<sub>4</sub>H<sub>2</sub>N; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with 1 equiv of GeCl<sub>2</sub>Ā·(dioxane). Treatment of LGeCl (<b>1</b>) with KO<i>t</i>Bu or LiNĀ­(H)Ar yielded LGeR (R = O<i>t</i>Bu (<b>2</b>), NĀ­(H)Ar (<b>3</b>)) by halide metathesis. (Pyrrolylaldiminato)Ā­methylaluminum chloride, LAlMeĀ­(Cl) (<b>4</b>), was obtained from the reaction of LLi and MeAlCl<sub>2</sub> or by treating LH with Me<sub>2</sub>AlCl in toluene. Treatment of LH with Me<sub>2</sub>AlCl or AlCl<sub>3</sub> in Et<sub>2</sub>O at āˆ’18 °C resulted in the 1:1 adducts LHĀ·AlMe<sub>2</sub>Cl (<b>5</b>) and LHĀ·AlCl<sub>3</sub> (<b>5</b>′), respectively. Further reaction of <b>4</b> with 2 equiv of LiNEt<sub>2</sub> led to the insertion of the NEt<sub>2</sub> group into the Cī—»N bond together with the elimination of LiCl, to afford L′(NEt<sub>2</sub>)Ā­AlMeĀ­(NEt<sub>2</sub>)Ā­LiĀ­(THF) (<b>6</b>). Similarly, treatment of <b>4</b> with 2 equiv of LiPPh<sub>2</sub>(THF)<sub>2</sub> gave L′(PPh<sub>2</sub>)Ā­AlMeĀ­(OC<sub>4</sub>H<sub>8</sub>-PPh<sub>2</sub>)Ā­LiĀ­(THF)<sub>2</sub> (<b>7</b>) accompanied by ring opening of THF. Single-crystal X-ray structure determinations revealed that <b>3</b> and <b>4</b> each contained enantiomeric pairs, while <b>6</b> and <b>7</b> each adopted a single enantiomer

    Synthesis and Characterization of Heterobimetallic Al–O–Cu Complexes toward Models for Heterogeneous Catalysts on Metal Oxide Surfaces

    No full text
    The β-diketiminato aluminum-monohydroxide and -dihydroxide were reacted with tetrameric (CuMes)<sub>4</sub> (Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) to prepare CuĀ­(I) complexes bearing the Al–O–Cu moiety. All complexes are characterized by elemental analysis, nuclear magnetic resonance, and single-crystal X-ray diffraction. The reaction of aluminum–monohydroxide LAlRĀ­(OH) (L = HCĀ­[CĀ­(Me)Ā­NĀ­(Ar)]<sub>2</sub>; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; R = Me, Et) with (CuMes)<sub>4</sub> afforded the CuĀ­(I) alumoxane [LAlĀ­(R)Ā­OCuĀ·MesCu]<sub>2</sub> (R = Me, <b>1</b>; Et, <b>2</b>). Using the aluminum-dihydroxide LAlĀ­(OH)<sub>2</sub> as the precursor, the dimeric [LAlĀ­(OH)Ā­OCuĀ·MesCu]<sub>2</sub> (<b>3</b>) was isolated, bearing one reactive OH group on each Al center. When the reaction of LAlĀ­(OH)<sub>2</sub> with (CuMes)<sub>4</sub> was carried out at 70 °C, the dimeric octanuclear CuĀ­(I) compound [LAlĀ­(OCuĀ·MesCu)<sub>2</sub>]<sub>2</sub> (<b>4</b>) was formed, where two residual Mes groups are located at the neighboring position on each of the two (OCuĀ·MesCu)<sub>2</sub> squares. Compound <b>4</b> can be alternatively obtained by reacting <b>3</b> with 1 equiv of (CuMes)<sub>4</sub> to demonstrate the stepwise assembly of the CuĀ­(I) alumoxanes

    Facile Route to Rare Heterobimetallic Aluminum–Copper and Aluminum–Zinc Selenide Clusters

    No full text
    Heterobimetallic aluminum–copper and aluminum–zinc clusters were prepared from the reaction of LAlĀ­(SeH)<sub>2</sub> [<b>1</b>; L = HCĀ­(CMeNAr)<sub>2</sub> and Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>] with (MesCu)<sub>4</sub> and ZnEt<sub>2</sub>, respectively. The resulting clusters with the core structures of Al<sub>2</sub>Se<sub>4</sub>Cu<sub>4</sub> and Al<sub>2</sub>Se<sub>4</sub>Zn<sub>3</sub> exhibit unique metal–organic frameworks. This is a novel pathway for the synthesis of aluminum–copper and aluminum–zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization

    β‑Diketiminate Germylene-Supported Pentafluorophenylcopper(I) and -silver(I) Complexes [LGe(Me)(CuC<sub>6</sub>F<sub>5</sub>)<sub><i>n</i></sub>]<sub>2</sub> (<i>n</i> = 1, 2), LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>]AgC<sub>6</sub>F<sub>5</sub>, and {LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>](AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (L = HC[C(Me)N-2,6‑<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>): Synthesis and Structural Characterization

    No full text
    Reactions of LGeMe (L = HCĀ­[CĀ­(Me)Ā­N-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25 or 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> gave the products [LGeĀ­(Me)Ā­CuC<sub>6</sub>F<sub>5</sub>]<sub>2</sub> (<b>1</b>) and [LGeĀ­(Me)Ā­(CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>), respectively. In situ formed <b>1</b> reacted with 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to give <b>2</b> on the basis of NMR (<sup>1</sup>H and <sup>19</sup>F) spectral measurements. Conversely, <b>2</b> was converted into <b>1</b> by treatment with 2 equiv of LGeMe. Reactions of LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub> with 1 or 2 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN produced the corresponding compounds LGeĀ­[CĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>]Ā­AgC<sub>6</sub>F<sub>5</sub> (<b>3</b>) and {LGeĀ­[CĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>]Ā­(AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (<b>4</b>). Similarly, <b>3</b> was converted into <b>4</b> by treatment with 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN and <b>4</b> converted into <b>3</b> by reaction with 2 equiv of LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>. X-ray crystallographic studies showed that <b>1</b> contains a rhombically bridged (CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>, while <b>2</b> has a chain-structurally aggregated (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeMe. Correspondingly, <b>3</b> showed a terminally bound AgC<sub>6</sub>F<sub>5</sub> and <b>4</b> a chain-structurally aggregated (AgC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>. Photophysical studies proved that the Ge–Cu metal–metalloid donor–acceptor bonding persists in solutions of <b>1</b> and <b>2</b> and Ge–Ag donor–acceptor bonding in solutions of <b>3</b> and <b>4</b> as a result of the clear migration of their emission bands compared to those of the corresponding starting materials. Low-temperature (āˆ’50 °C) <sup>19</sup>F NMR spectral measurements detected dissociation of <b>1</b>, <b>2</b>, and <b>4</b> by the aggregation part of the CuC<sub>6</sub>F<sub>5</sub> or AgC<sub>6</sub>F<sub>5</sub> entities in solution. These results provide good support for pentafluorophenylcopperĀ­(I) or -silverĀ­(I) species having β-diketiminate germylene as a donor because of its remarkably electronic and steric character

    β‑Diketiminate Germylene-Supported Pentafluorophenylcopper(I) and -silver(I) Complexes [LGe(Me)(CuC<sub>6</sub>F<sub>5</sub>)<sub><i>n</i></sub>]<sub>2</sub> (<i>n</i> = 1, 2), LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>]AgC<sub>6</sub>F<sub>5</sub>, and {LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>](AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (L = HC[C(Me)N-2,6‑<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>): Synthesis and Structural Characterization

    No full text
    Reactions of LGeMe (L = HCĀ­[CĀ­(Me)Ā­N-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25 or 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> gave the products [LGeĀ­(Me)Ā­CuC<sub>6</sub>F<sub>5</sub>]<sub>2</sub> (<b>1</b>) and [LGeĀ­(Me)Ā­(CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>), respectively. In situ formed <b>1</b> reacted with 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to give <b>2</b> on the basis of NMR (<sup>1</sup>H and <sup>19</sup>F) spectral measurements. Conversely, <b>2</b> was converted into <b>1</b> by treatment with 2 equiv of LGeMe. Reactions of LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub> with 1 or 2 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN produced the corresponding compounds LGeĀ­[CĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>]Ā­AgC<sub>6</sub>F<sub>5</sub> (<b>3</b>) and {LGeĀ­[CĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>]Ā­(AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (<b>4</b>). Similarly, <b>3</b> was converted into <b>4</b> by treatment with 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN and <b>4</b> converted into <b>3</b> by reaction with 2 equiv of LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>. X-ray crystallographic studies showed that <b>1</b> contains a rhombically bridged (CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>, while <b>2</b> has a chain-structurally aggregated (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeMe. Correspondingly, <b>3</b> showed a terminally bound AgC<sub>6</sub>F<sub>5</sub> and <b>4</b> a chain-structurally aggregated (AgC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeCĀ­(SiMe<sub>3</sub>)Ā­N<sub>2</sub>. Photophysical studies proved that the Ge–Cu metal–metalloid donor–acceptor bonding persists in solutions of <b>1</b> and <b>2</b> and Ge–Ag donor–acceptor bonding in solutions of <b>3</b> and <b>4</b> as a result of the clear migration of their emission bands compared to those of the corresponding starting materials. Low-temperature (āˆ’50 °C) <sup>19</sup>F NMR spectral measurements detected dissociation of <b>1</b>, <b>2</b>, and <b>4</b> by the aggregation part of the CuC<sub>6</sub>F<sub>5</sub> or AgC<sub>6</sub>F<sub>5</sub> entities in solution. These results provide good support for pentafluorophenylcopperĀ­(I) or -silverĀ­(I) species having β-diketiminate germylene as a donor because of its remarkably electronic and steric character

    Reactivity Studies of (Phenylethynyl)germylene LGeCī—¼CPh (L = HC[C(Me)N-2,6‑<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) toward Pentafluorophenylcopper(I), -silver(I), and -gold(I) Complexes

    No full text
    Reactions of (phenylethynyl)Ā­germylene LGeCī—¼CPh (L = HCĀ­[CĀ­(Me)Ā­N-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and 1 equiv of AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub>, respectively, yielded LGeĀ­(Cī—¼CPh)Ā­CuC<sub>6</sub>F<sub>5</sub> (<b>1</b>), [(LGeCī—¼CPh)<sub>2</sub>Ag]<sup>+</sup>[AgĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sup>āˆ’</sup> (<b>2</b>), and LGeĀ­(Cī—¼CPh)Ā­AuC<sub>6</sub>F<sub>5</sub> (<b>3</b>). Complexes <b>1</b>–<b>3</b> were characterized by IR and NMR spectroscopy and X-ray crystallography. Compound <b>1</b> shows a bonding pattern of the CuC<sub>6</sub>F<sub>5</sub> entity by both the phenylethynyl Cī—¼C linkage and the L ligand backbone of the γ-C atom, while <b>3</b> exhibits a bonding mode of the AuC<sub>6</sub>F<sub>5</sub> entity at the germylene center. Compound <b>2</b> is an ionic derivative featuring the Ge–Ag donor–acceptor bond formed under redistribution of the AgC<sub>6</sub>F<sub>5</sub> entity. Further reactions of <b>1</b> with (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub> afforded the complexes LGeĀ­(Cī—¼CPh)Ā­(CuC<sub>6</sub>F<sub>5</sub>)Ā­(MC<sub>6</sub>F<sub>5</sub>) (M = Cu (<b>4</b>), Ag (<b>5</b>), Au (<b>6</b>)). Compounds <b>4</b>–<b>6</b> were characterized by IR and NMR spectroscopy, and <b>5</b> and <b>6</b> were further investigated by X-ray crystallography. Compounds <b>4</b>–<b>6</b> all show an additional bonding of the respective MC<sub>6</sub>F<sub>5</sub> moiety at the germylene center of <b>1</b>. These studies reveal a multiple donor reactivity of LGeCī—¼CPh. The slightly different Lewis acidic properties of the congeneric pentafluorophenylcopperĀ­(I), -silverĀ­(I), and -goldĀ­(I) complexes as acceptors are thus disclosed

    Reactivity Studies of (Phenylethynyl)germylene LGeCī—¼CPh (L = HC[C(Me)N-2,6‑<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) toward Pentafluorophenylcopper(I), -silver(I), and -gold(I) Complexes

    No full text
    Reactions of (phenylethynyl)Ā­germylene LGeCī—¼CPh (L = HCĀ­[CĀ­(Me)Ā­N-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and 1 equiv of AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub>, respectively, yielded LGeĀ­(Cī—¼CPh)Ā­CuC<sub>6</sub>F<sub>5</sub> (<b>1</b>), [(LGeCī—¼CPh)<sub>2</sub>Ag]<sup>+</sup>[AgĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sup>āˆ’</sup> (<b>2</b>), and LGeĀ­(Cī—¼CPh)Ā­AuC<sub>6</sub>F<sub>5</sub> (<b>3</b>). Complexes <b>1</b>–<b>3</b> were characterized by IR and NMR spectroscopy and X-ray crystallography. Compound <b>1</b> shows a bonding pattern of the CuC<sub>6</sub>F<sub>5</sub> entity by both the phenylethynyl Cī—¼C linkage and the L ligand backbone of the γ-C atom, while <b>3</b> exhibits a bonding mode of the AuC<sub>6</sub>F<sub>5</sub> entity at the germylene center. Compound <b>2</b> is an ionic derivative featuring the Ge–Ag donor–acceptor bond formed under redistribution of the AgC<sub>6</sub>F<sub>5</sub> entity. Further reactions of <b>1</b> with (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub> afforded the complexes LGeĀ­(Cī—¼CPh)Ā­(CuC<sub>6</sub>F<sub>5</sub>)Ā­(MC<sub>6</sub>F<sub>5</sub>) (M = Cu (<b>4</b>), Ag (<b>5</b>), Au (<b>6</b>)). Compounds <b>4</b>–<b>6</b> were characterized by IR and NMR spectroscopy, and <b>5</b> and <b>6</b> were further investigated by X-ray crystallography. Compounds <b>4</b>–<b>6</b> all show an additional bonding of the respective MC<sub>6</sub>F<sub>5</sub> moiety at the germylene center of <b>1</b>. These studies reveal a multiple donor reactivity of LGeCī—¼CPh. The slightly different Lewis acidic properties of the congeneric pentafluorophenylcopperĀ­(I), -silverĀ­(I), and -goldĀ­(I) complexes as acceptors are thus disclosed

    N‑Geminal P/Al Lewis Pair–Alkyne Dipolar Cycloaddition to the Zwitterionic C<sub>2</sub>PNAl-Heterocyclopentene

    No full text
    The N-geminal P/Al Lewis pair [Ph<sub>2</sub>PNĀ­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­AlEt<sub>2</sub>]<sub>2</sub> (<b>1</b>) has been prepared and studied for reaction with a series of alkynes. The reaction of <b>1</b> with RCī—¼CR yielded zwitterionic C<sub>2</sub>PNAl-heterocyclopentene [Ph<sub>2</sub>PNĀ­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­AlEt<sub>2</sub>]Ā­(CRī—»CR) (R = Me (<b>2</b>), Ph (<b>3</b>)); with PhCī—¼CEt produced two isomers, [Ph<sub>2</sub>PNĀ­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­AlEt<sub>2</sub>]Ā­(CPhī—»CEt) (<b>4a</b>) and [Ph<sub>2</sub>PNĀ­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­AlEt<sub>2</sub>]Ā­(CEt­CPh) (<b>4b</b>); and with other alkynes generated [Ph<sub>2</sub>PNĀ­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Ā­AlEt<sub>2</sub>]Ā­(CR<sup>1</sup>ī—»CR<sup>2</sup>) (R<sup>1</sup>, R<sup>2</sup> = CO<sub>2</sub>Et, Ph (<b>5</b>); SiMe<sub>3</sub>, Ph (<b>6</b>); PPh<sub>2</sub>, Ph (<b>7</b>); SiMe<sub>3</sub>,H (<b>8</b>); H, EtO (<b>9</b>)). Natural bond orbital analysis of the charge separation of the Cī—¼C bond of alkynes was carried out, and then, the electronic matching interaction mode between the combined Lewis acid (AlEt<sub>2</sub>) and base (PPh<sub>2</sub>) groups of <b>1</b> and the Cī—¼C bond of such alkynes was discussed. Reactions of <b>1</b> with alkene, nitrile, and carbodiimide molecules were also carried out, and cycloaddition compounds <b>10</b>–<b>12</b> were produced
    corecore