26 research outputs found
Syntheses and Reactions of Derivatives of (Pyrrolylaldiminato)germanium(II) and -Aluminum(III)
(Pyrrolylaldiminato)ĀgermaniumĀ(II) chloride, LGeCl (<b>1</b>), was prepared by reacting LLi (L = 2-(ArNī»CH)-5-<i>t</i>BuC<sub>4</sub>H<sub>2</sub>N; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with 1 equiv of GeCl<sub>2</sub>Ā·(dioxane). Treatment of LGeCl (<b>1</b>) with
KO<i>t</i>Bu or LiNĀ(H)Ar yielded LGeR (R = O<i>t</i>Bu (<b>2</b>), NĀ(H)Ar (<b>3</b>)) by halide metathesis.
(Pyrrolylaldiminato)Āmethylaluminum chloride, LAlMeĀ(Cl) (<b>4</b>), was obtained from the reaction of LLi and MeAlCl<sub>2</sub> or
by treating LH with Me<sub>2</sub>AlCl in toluene. Treatment of LH
with Me<sub>2</sub>AlCl or AlCl<sub>3</sub> in Et<sub>2</sub>O at
ā18 °C resulted in the 1:1 adducts LHĀ·AlMe<sub>2</sub>Cl (<b>5</b>) and LHĀ·AlCl<sub>3</sub> (<b>5</b>ā²),
respectively. Further reaction of <b>4</b> with 2 equiv of LiNEt<sub>2</sub> led to the insertion of the NEt<sub>2</sub> group into the
Cī»N bond together with the elimination of LiCl, to afford Lā²(NEt<sub>2</sub>)ĀAlMeĀ(NEt<sub>2</sub>)ĀLiĀ(THF) (<b>6</b>). Similarly,
treatment of <b>4</b> with 2 equiv of LiPPh<sub>2</sub>(THF)<sub>2</sub> gave Lā²(PPh<sub>2</sub>)ĀAlMeĀ(OC<sub>4</sub>H<sub>8</sub>-PPh<sub>2</sub>)ĀLiĀ(THF)<sub>2</sub> (<b>7</b>) accompanied
by ring opening of THF. Single-crystal X-ray structure determinations
revealed that <b>3</b> and <b>4</b> each contained enantiomeric
pairs, while <b>6</b> and <b>7</b> each adopted a single
enantiomer
Synthesis and Characterization of Coinage Metal Aluminum Sulfur Species
The
synthesis of heterobimetallic cluster with the AlāSāM
(M = Cu and Ag) structural unit has been realized for the first time
by the reaction of aluminum-dithiol LAlĀ(SH)<sub>2</sub> (L = HCĀ[CĀ(Me)ĀNĀ(Ar)]<sub>2</sub>, Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with (MesCu)<sub>4</sub> and (MesAg)<sub>4</sub> (Mes =
2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>), respectively. The
isolated clusters exhibit core structures of Al<sub>2</sub>Cu<sub>4</sub>S<sub>4</sub> and Al<sub>4</sub>Ag<sub>8</sub>S<sub>8</sub>, respectively. During the formation of the [LAlĀ(SAg)<sub>2</sub>]<sub>4</sub>, a side product of LAlS<sub>6</sub> is formed. However,
the reaction of LAlĀ(SH)<sub>2</sub> with excess of sulfur and (MesAg)<sub>4</sub> resulted in the formation of LAlS<sub>4</sub> as the only
product soluble in organic solvents. Both of them represent rare examples
of aluminum polysulfides. All compounds were characterized by spectroscopic
methods and single crystal X-ray diffraction studies
Syntheses and Reactions of Derivatives of (Pyrrolylaldiminato)germanium(II) and -Aluminum(III)
(Pyrrolylaldiminato)ĀgermaniumĀ(II) chloride, LGeCl (<b>1</b>), was prepared by reacting LLi (L = 2-(ArNī»CH)-5-<i>t</i>BuC<sub>4</sub>H<sub>2</sub>N; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with 1 equiv of GeCl<sub>2</sub>Ā·(dioxane). Treatment of LGeCl (<b>1</b>) with
KO<i>t</i>Bu or LiNĀ(H)Ar yielded LGeR (R = O<i>t</i>Bu (<b>2</b>), NĀ(H)Ar (<b>3</b>)) by halide metathesis.
(Pyrrolylaldiminato)Āmethylaluminum chloride, LAlMeĀ(Cl) (<b>4</b>), was obtained from the reaction of LLi and MeAlCl<sub>2</sub> or
by treating LH with Me<sub>2</sub>AlCl in toluene. Treatment of LH
with Me<sub>2</sub>AlCl or AlCl<sub>3</sub> in Et<sub>2</sub>O at
ā18 °C resulted in the 1:1 adducts LHĀ·AlMe<sub>2</sub>Cl (<b>5</b>) and LHĀ·AlCl<sub>3</sub> (<b>5</b>ā²),
respectively. Further reaction of <b>4</b> with 2 equiv of LiNEt<sub>2</sub> led to the insertion of the NEt<sub>2</sub> group into the
Cī»N bond together with the elimination of LiCl, to afford Lā²(NEt<sub>2</sub>)ĀAlMeĀ(NEt<sub>2</sub>)ĀLiĀ(THF) (<b>6</b>). Similarly,
treatment of <b>4</b> with 2 equiv of LiPPh<sub>2</sub>(THF)<sub>2</sub> gave Lā²(PPh<sub>2</sub>)ĀAlMeĀ(OC<sub>4</sub>H<sub>8</sub>-PPh<sub>2</sub>)ĀLiĀ(THF)<sub>2</sub> (<b>7</b>) accompanied
by ring opening of THF. Single-crystal X-ray structure determinations
revealed that <b>3</b> and <b>4</b> each contained enantiomeric
pairs, while <b>6</b> and <b>7</b> each adopted a single
enantiomer
Synthesis and Characterization of Heterobimetallic AlāOāCu Complexes toward Models for Heterogeneous Catalysts on Metal Oxide Surfaces
The β-diketiminato aluminum-monohydroxide
and -dihydroxide were reacted with tetrameric (CuMes)<sub>4</sub> (Mes
= 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) to prepare CuĀ(I)
complexes bearing the AlāOāCu moiety. All complexes
are characterized by elemental analysis, nuclear magnetic resonance,
and single-crystal X-ray diffraction. The reaction of aluminumāmonohydroxide
LAlRĀ(OH) (L = HCĀ[CĀ(Me)ĀNĀ(Ar)]<sub>2</sub>; Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; R = Me, Et) with (CuMes)<sub>4</sub> afforded the CuĀ(I) alumoxane [LAlĀ(R)ĀOCuĀ·MesCu]<sub>2</sub> (R = Me, <b>1</b>; Et, <b>2</b>). Using the aluminum-dihydroxide
LAlĀ(OH)<sub>2</sub> as the precursor, the dimeric [LAlĀ(OH)ĀOCuĀ·MesCu]<sub>2</sub> (<b>3</b>) was isolated, bearing one reactive OH group
on each Al center. When the reaction of LAlĀ(OH)<sub>2</sub> with (CuMes)<sub>4</sub> was carried out at 70 °C, the dimeric octanuclear CuĀ(I)
compound [LAlĀ(OCuĀ·MesCu)<sub>2</sub>]<sub>2</sub> (<b>4</b>) was formed, where two residual Mes groups are located at the neighboring
position on each of the two (OCuĀ·MesCu)<sub>2</sub> squares.
Compound <b>4</b> can be alternatively obtained by reacting <b>3</b> with 1 equiv of (CuMes)<sub>4</sub> to demonstrate the stepwise
assembly of the CuĀ(I) alumoxanes
Facile Route to Rare Heterobimetallic AluminumāCopper and AluminumāZinc Selenide Clusters
Heterobimetallic aluminumācopper
and aluminumāzinc clusters were prepared from the reaction
of LAlĀ(SeH)<sub>2</sub> [<b>1</b>; L = HCĀ(CMeNAr)<sub>2</sub> and Ar = 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>] with (MesCu)<sub>4</sub> and ZnEt<sub>2</sub>, respectively.
The resulting clusters with the core structures of Al<sub>2</sub>Se<sub>4</sub>Cu<sub>4</sub> and Al<sub>2</sub>Se<sub>4</sub>Zn<sub>3</sub> exhibit unique metalāorganic frameworks. This is a novel
pathway for the synthesis of aluminumācopper and aluminumāzinc
selenides. The products have been characterized by spectroscopic methods
and single-crystal X-ray structural characterization
βāDiketiminate Germylene-Supported Pentafluorophenylcopper(I) and -silver(I) Complexes [LGe(Me)(CuC<sub>6</sub>F<sub>5</sub>)<sub><i>n</i></sub>]<sub>2</sub> (<i>n</i> = 1, 2), LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>]AgC<sub>6</sub>F<sub>5</sub>, and {LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>](AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (L = HC[C(Me)N-2,6ā<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>): Synthesis and Structural Characterization
Reactions of LGeMe (L = HCĀ[CĀ(Me)ĀN-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25
or 0.5
equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> gave the products
[LGeĀ(Me)ĀCuC<sub>6</sub>F<sub>5</sub>]<sub>2</sub> (<b>1</b>)
and [LGeĀ(Me)Ā(CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>), respectively. In situ formed <b>1</b> reacted
with 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to give <b>2</b> on the basis of NMR (<sup>1</sup>H and <sup>19</sup>F) spectral
measurements. Conversely, <b>2</b> was converted into <b>1</b> by treatment with 2 equiv of LGeMe. Reactions of LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub> with 1 or 2 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN produced the corresponding compounds LGeĀ[CĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>]ĀAgC<sub>6</sub>F<sub>5</sub> (<b>3</b>) and
{LGeĀ[CĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>]Ā(AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (<b>4</b>). Similarly, <b>3</b> was converted into <b>4</b> by treatment with 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN and <b>4</b> converted into <b>3</b> by reaction with 2 equiv of LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>. X-ray crystallographic studies showed that <b>1</b> contains a rhombically bridged (CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>, while <b>2</b> has a chain-structurally aggregated
(CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeMe.
Correspondingly, <b>3</b> showed a terminally bound AgC<sub>6</sub>F<sub>5</sub> and <b>4</b> a chain-structurally aggregated
(AgC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>. Photophysical studies proved that the GeāCu
metalāmetalloid donorāacceptor bonding persists in solutions
of <b>1</b> and <b>2</b> and GeāAg donorāacceptor
bonding in solutions of <b>3</b> and <b>4</b> as a result
of the clear migration of their emission bands compared to those of
the corresponding starting materials. Low-temperature (ā50
°C) <sup>19</sup>F NMR spectral measurements detected dissociation
of <b>1</b>, <b>2</b>, and <b>4</b> by the aggregation
part of the CuC<sub>6</sub>F<sub>5</sub> or AgC<sub>6</sub>F<sub>5</sub> entities in solution. These results provide good support for pentafluorophenylcopperĀ(I)
or -silverĀ(I) species having β-diketiminate germylene as a donor
because of its remarkably electronic and steric character
βāDiketiminate Germylene-Supported Pentafluorophenylcopper(I) and -silver(I) Complexes [LGe(Me)(CuC<sub>6</sub>F<sub>5</sub>)<sub><i>n</i></sub>]<sub>2</sub> (<i>n</i> = 1, 2), LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>]AgC<sub>6</sub>F<sub>5</sub>, and {LGe[C(SiMe<sub>3</sub>)N<sub>2</sub>](AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (L = HC[C(Me)N-2,6ā<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>): Synthesis and Structural Characterization
Reactions of LGeMe (L = HCĀ[CĀ(Me)ĀN-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) with 0.25
or 0.5
equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> gave the products
[LGeĀ(Me)ĀCuC<sub>6</sub>F<sub>5</sub>]<sub>2</sub> (<b>1</b>)
and [LGeĀ(Me)Ā(CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>), respectively. In situ formed <b>1</b> reacted
with 0.5 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub> to give <b>2</b> on the basis of NMR (<sup>1</sup>H and <sup>19</sup>F) spectral
measurements. Conversely, <b>2</b> was converted into <b>1</b> by treatment with 2 equiv of LGeMe. Reactions of LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub> with 1 or 2 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN produced the corresponding compounds LGeĀ[CĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>]ĀAgC<sub>6</sub>F<sub>5</sub> (<b>3</b>) and
{LGeĀ[CĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>]Ā(AgC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>}<sub>2</sub> (<b>4</b>). Similarly, <b>3</b> was converted into <b>4</b> by treatment with 1 equiv of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN and <b>4</b> converted into <b>3</b> by reaction with 2 equiv of LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>. X-ray crystallographic studies showed that <b>1</b> contains a rhombically bridged (CuC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>, while <b>2</b> has a chain-structurally aggregated
(CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeMe.
Correspondingly, <b>3</b> showed a terminally bound AgC<sub>6</sub>F<sub>5</sub> and <b>4</b> a chain-structurally aggregated
(AgC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, both supported by LGeCĀ(SiMe<sub>3</sub>)ĀN<sub>2</sub>. Photophysical studies proved that the GeāCu
metalāmetalloid donorāacceptor bonding persists in solutions
of <b>1</b> and <b>2</b> and GeāAg donorāacceptor
bonding in solutions of <b>3</b> and <b>4</b> as a result
of the clear migration of their emission bands compared to those of
the corresponding starting materials. Low-temperature (ā50
°C) <sup>19</sup>F NMR spectral measurements detected dissociation
of <b>1</b>, <b>2</b>, and <b>4</b> by the aggregation
part of the CuC<sub>6</sub>F<sub>5</sub> or AgC<sub>6</sub>F<sub>5</sub> entities in solution. These results provide good support for pentafluorophenylcopperĀ(I)
or -silverĀ(I) species having β-diketiminate germylene as a donor
because of its remarkably electronic and steric character
Reactivity Studies of (Phenylethynyl)germylene LGeCī¼CPh (L = HC[C(Me)N-2,6ā<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) toward Pentafluorophenylcopper(I), -silver(I), and -gold(I) Complexes
Reactions of (phenylethynyl)Āgermylene LGeCī¼CPh
(L = HCĀ[CĀ(Me)ĀN-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>)
with 0.25 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, 1 equiv
of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and 1 equiv of AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub>, respectively,
yielded LGeĀ(Cī¼CPh)ĀCuC<sub>6</sub>F<sub>5</sub> (<b>1</b>), [(LGeCī¼CPh)<sub>2</sub>Ag]<sup>+</sup>[AgĀ(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sup>ā</sup> (<b>2</b>),
and LGeĀ(Cī¼CPh)ĀAuC<sub>6</sub>F<sub>5</sub> (<b>3</b>).
Complexes <b>1</b>ā<b>3</b> were characterized
by IR and NMR spectroscopy and X-ray crystallography. Compound <b>1</b> shows a bonding pattern of the CuC<sub>6</sub>F<sub>5</sub> entity by both the phenylethynyl Cī¼C linkage and the L ligand
backbone of the γ-C atom, while <b>3</b> exhibits a bonding
mode of the AuC<sub>6</sub>F<sub>5</sub> entity at the germylene center.
Compound <b>2</b> is an ionic derivative featuring the GeāAg
donorāacceptor bond formed under redistribution of the AgC<sub>6</sub>F<sub>5</sub> entity. Further reactions of <b>1</b> with
(CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub> afforded the complexes LGeĀ(Cī¼CPh)Ā(CuC<sub>6</sub>F<sub>5</sub>)Ā(MC<sub>6</sub>F<sub>5</sub>) (M = Cu (<b>4</b>), Ag
(<b>5</b>), Au (<b>6</b>)). Compounds <b>4</b>ā<b>6</b> were characterized by IR and NMR spectroscopy, and <b>5</b> and <b>6</b> were further investigated by X-ray crystallography.
Compounds <b>4</b>ā<b>6</b> all show an additional
bonding of the respective MC<sub>6</sub>F<sub>5</sub> moiety at the
germylene center of <b>1</b>. These studies reveal a multiple
donor reactivity of LGeCī¼CPh. The slightly different Lewis
acidic properties of the congeneric pentafluorophenylcopperĀ(I), -silverĀ(I),
and -goldĀ(I) complexes as acceptors are thus disclosed
Reactivity Studies of (Phenylethynyl)germylene LGeCī¼CPh (L = HC[C(Me)N-2,6ā<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>) toward Pentafluorophenylcopper(I), -silver(I), and -gold(I) Complexes
Reactions of (phenylethynyl)Āgermylene LGeCī¼CPh
(L = HCĀ[CĀ(Me)ĀN-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>)
with 0.25 equiv of (CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, 1 equiv
of AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and 1 equiv of AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub>, respectively,
yielded LGeĀ(Cī¼CPh)ĀCuC<sub>6</sub>F<sub>5</sub> (<b>1</b>), [(LGeCī¼CPh)<sub>2</sub>Ag]<sup>+</sup>[AgĀ(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]<sup>ā</sup> (<b>2</b>),
and LGeĀ(Cī¼CPh)ĀAuC<sub>6</sub>F<sub>5</sub> (<b>3</b>).
Complexes <b>1</b>ā<b>3</b> were characterized
by IR and NMR spectroscopy and X-ray crystallography. Compound <b>1</b> shows a bonding pattern of the CuC<sub>6</sub>F<sub>5</sub> entity by both the phenylethynyl Cī¼C linkage and the L ligand
backbone of the γ-C atom, while <b>3</b> exhibits a bonding
mode of the AuC<sub>6</sub>F<sub>5</sub> entity at the germylene center.
Compound <b>2</b> is an ionic derivative featuring the GeāAg
donorāacceptor bond formed under redistribution of the AgC<sub>6</sub>F<sub>5</sub> entity. Further reactions of <b>1</b> with
(CuC<sub>6</sub>F<sub>5</sub>)<sub>4</sub>, AgC<sub>6</sub>F<sub>5</sub>Ā·MeCN, and AuC<sub>6</sub>F<sub>5</sub>Ā·SC<sub>4</sub>H<sub>8</sub> afforded the complexes LGeĀ(Cī¼CPh)Ā(CuC<sub>6</sub>F<sub>5</sub>)Ā(MC<sub>6</sub>F<sub>5</sub>) (M = Cu (<b>4</b>), Ag
(<b>5</b>), Au (<b>6</b>)). Compounds <b>4</b>ā<b>6</b> were characterized by IR and NMR spectroscopy, and <b>5</b> and <b>6</b> were further investigated by X-ray crystallography.
Compounds <b>4</b>ā<b>6</b> all show an additional
bonding of the respective MC<sub>6</sub>F<sub>5</sub> moiety at the
germylene center of <b>1</b>. These studies reveal a multiple
donor reactivity of LGeCī¼CPh. The slightly different Lewis
acidic properties of the congeneric pentafluorophenylcopperĀ(I), -silverĀ(I),
and -goldĀ(I) complexes as acceptors are thus disclosed
NāGeminal P/Al Lewis PairāAlkyne Dipolar Cycloaddition to the Zwitterionic C<sub>2</sub>PNAl-Heterocyclopentene
The
N-geminal P/Al Lewis pair [Ph<sub>2</sub>PNĀ(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀAlEt<sub>2</sub>]<sub>2</sub> (<b>1</b>) has been prepared and studied for reaction with
a series of alkynes. The reaction of <b>1</b> with RCī¼CR
yielded zwitterionic C<sub>2</sub>PNAl-heterocyclopentene [Ph<sub>2</sub>PNĀ(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀAlEt<sub>2</sub>]Ā(CRī»CR) (R = Me
(<b>2</b>), Ph (<b>3</b>)); with PhCī¼CEt produced
two isomers, [Ph<sub>2</sub>PNĀ(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀAlEt<sub>2</sub>]Ā(CPhī»CEt) (<b>4a</b>) and [Ph<sub>2</sub>PNĀ(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀAlEt<sub>2</sub>]Ā(CEtī»ĀCPh) (<b>4b</b>); and with other alkynes generated
[Ph<sub>2</sub>PNĀ(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ĀAlEt<sub>2</sub>]Ā(CR<sup>1</sup>ī»CR<sup>2</sup>) (R<sup>1</sup>, R<sup>2</sup> = CO<sub>2</sub>Et,
Ph (<b>5</b>); SiMe<sub>3</sub>, Ph (<b>6</b>); PPh<sub>2</sub>, Ph (<b>7</b>); SiMe<sub>3</sub>,H (<b>8</b>);
H, EtO (<b>9</b>)). Natural bond orbital analysis of the charge separation of the Cī¼C bond
of alkynes was carried out, and then, the electronic matching interaction
mode between the combined Lewis acid (AlEt<sub>2</sub>) and base (PPh<sub>2</sub>) groups of <b>1</b> and the Cī¼C bond of such
alkynes was discussed. Reactions of <b>1</b> with alkene, nitrile,
and carbodiimide molecules were also carried out, and cycloaddition
compounds <b>10</b>ā<b>12</b> were produced