5,569 research outputs found
Heating mechanism affects equipartition in a binary granular system
Two species of particles in a binary granular system typically do not have
the same mean kinetic energy, in contrast to the equipartition of energy
required in equilibrium. We investigate the role of the heating mechanism in
determining the extent of this non-equipartition of kinetic energy. In most
experiments, different species of particle are unequally heated at the
boundaries. We show by event-driven simulations that this differential heating
at the boundary influences the level of non-equipartition even in the bulk of
the system. This conclusion is fortified by studying a numerical model and a
solvable stochastic model without spatial degrees of freedom. In both cases,
even in the limit where heating events are rare compared to collisions, the
effect of the heating mechanism persists
Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.
The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases
Poly[[triaqua(μ3-pyridine-2,4,6-tricarboxylato)gadolinium(III)] monohydrate]
The title compound, {[Gd(C8H2NO6)(H2O)3]·H2O}n, was obtained in water under hydrothermal conditions. The GdIII ions are nine-coordinated by two O and one N atoms from one pyridine-2,4,6-tricarboxylate ligand, two O atoms from another ligand, one O atom from a third ligand and three coordinated water molecules. Each ligand binds three metal centers. Two-dimensional layers are formed through the Gd—O bonds and the layers are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network
Deforming black holes with even multipolar differential rotation boundary
Motivated by the novel asymptotically global AdS solutions with deforming
horizon in [JHEP {\bf 1802}, 060 (2018)], we analyze the boundary metric with
even multipolar differential rotation and numerically construct a family of
deforming solutions with quadrupolar differential rotation boundary, including
two classes of solutions: solitons and black holes. In contrast to solutions
with dipolar differential rotation boundary, we find that even though the norm
of Killing vector becomes spacelike for certain regions of polar
angle when , solitons and black holes with quadrupolar
differential rotation still exist and do not develop hair due to superradiance.
Moreover, at the same temperature, the horizonal deformation of quadrupolar
rotation is smaller than that of dipolar rotation. Furthermore, we also study
the entropy and quasinormal modes of the solutions, which have the analogous
properties to that of dipolar rotation.Comment: 18 pages, 21 figure
Improved collaborative filtering algorithm via information transformation
In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user–user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy
- …