2 research outputs found

    Laminated Graphene Films for Flexible Transparent Thin Film Encapsulation

    No full text
    We introduce a simple, inexpensive, and large-area flexible transparent lamination encapsulation method that uses graphene films with polydimethylsiloxane (PDMS) buffer on polyethylene terephthalate (PET) substrate. The number of stacked graphene layers (<i>n</i><sub>G</sub>) was increased from 2 to 6, and 6-layered graphene-encapsulation showed high impermeability to moisture and air. The graphene-encapsulated polymer light emitting diodes (PLEDs) had stable operating characteristics, and the operational lifetime of encapsulated PLEDs increased as <i>n</i><sub>G</sub> increased. Calcium oxidation test data confirmed the improved impermeability of graphene-encapsulation with increased <i>n</i><sub>G</sub>. As a practical application, we demonstrated large-area flexible organic light emitting diodes (FOLEDs) and transparent FOLEDs that were encapsulated by our polymer/graphene encapsulant

    Solution-Processed n‑Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    No full text
    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)­phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ∼0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathode doped with N-DMBI radical showed dramatically improved device efficiency (∼13.8 cd/A) than did inverted PLEDs with pristine graphene (∼2.74 cd/A). N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics
    corecore