456 research outputs found

    Alternating direction method of multipliers for penalized zero-variance discriminant analysis

    Get PDF
    We consider the task of classification in the high dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose a heuristic, called sparse zero-variance discriminant analysis (SZVD), for simultaneously performing linear discriminant analysis and feature selection on high dimensional data. This method combines classical zero-variance discriminant analysis, where discriminant vectors are identified in the null space of the sample within-class covariance matrix, with penalization applied to induce sparse structures in the resulting vectors. To approximately solve the resulting nonconvex problem, we develop a simple algorithm based on the alternating direction method of multipliers. Further, we show that this algorithm is applicable to a larger class of penalized generalized eigenvalue problems, including a particular relaxation of the sparse principal component analysis problem. Finally, we establish theoretical guarantees for convergence of our algorithm to stationary points of the original nonconvex problem, and empirically demonstrate the effectiveness of our heuristic for classifying simulated data and data drawn from applications in time-series classification

    Quantized Consensus ADMM for Multi-Agent Distributed Optimization

    Get PDF
    Multi-agent distributed optimization over a network minimizes a global objective formed by a sum of local convex functions using only local computation and communication. We develop and analyze a quantized distributed algorithm based on the alternating direction method of multipliers (ADMM) when inter-agent communications are subject to finite capacity and other practical constraints. While existing quantized ADMM approaches only work for quadratic local objectives, the proposed algorithm can deal with more general objective functions (possibly non-smooth) including the LASSO. Under certain convexity assumptions, our algorithm converges to a consensus within log1+ηΩ\log_{1+\eta}\Omega iterations, where η>0\eta>0 depends on the local objectives and the network topology, and Ω\Omega is a polynomial determined by the quantization resolution, the distance between initial and optimal variable values, the local objective functions and the network topology. A tight upper bound on the consensus error is also obtained which does not depend on the size of the network.Comment: 30 pages, 4 figures; to be submitted to IEEE Trans. Signal Processing. arXiv admin note: text overlap with arXiv:1307.5561 by other author

    Sample Approximation-Based Deflation Approaches for Chance SINR Constrained Joint Power and Admission Control

    Get PDF
    Consider the joint power and admission control (JPAC) problem for a multi-user single-input single-output (SISO) interference channel. Most existing works on JPAC assume the perfect instantaneous channel state information (CSI). In this paper, we consider the JPAC problem with the imperfect CSI, that is, we assume that only the channel distribution information (CDI) is available. We formulate the JPAC problem into a chance (probabilistic) constrained program, where each link's SINR outage probability is enforced to be less than or equal to a specified tolerance. To circumvent the computational difficulty of the chance SINR constraints, we propose to use the sample (scenario) approximation scheme to convert them into finitely many simple linear constraints. Furthermore, we reformulate the sample approximation of the chance SINR constrained JPAC problem as a composite group sparse minimization problem and then approximate it by a second-order cone program (SOCP). The solution of the SOCP approximation can be used to check the simultaneous supportability of all links in the network and to guide an iterative link removal procedure (the deflation approach). We exploit the special structure of the SOCP approximation and custom-design an efficient algorithm for solving it. Finally, we illustrate the effectiveness and efficiency of the proposed sample approximation-based deflation approaches by simulations.Comment: The paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Multi-Agent Distributed Optimization via Inexact Consensus ADMM

    Get PDF
    Multi-agent distributed consensus optimization problems arise in many signal processing applications. Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family of problems. ADMM based distributed optimization method is shown to have faster convergence rate compared with classic methods based on consensus subgradient, but can be computationally expensive, especially for problems with complicated structures or large dimensions. In this paper, we propose low-complexity algorithms that can reduce the overall computational cost of consensus ADMM by an order of magnitude for certain large-scale problems. Central to the proposed algorithms is the use of an inexact step for each ADMM update, which enables the agents to perform cheap computation at each iteration. Our convergence analyses show that the proposed methods converge well under some convexity assumptions. Numerical results show that the proposed algorithms offer considerably lower computational complexity than the standard ADMM based distributed optimization methods.Comment: submitted to IEEE Trans. Signal Processing; Revised April 2014 and August 201

    Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks

    Get PDF
    We study the downlink linear precoder design problem in a multi-cell dense heterogeneous network (HetNet). The problem is formulated as a general sum-utility maximization (SUM) problem, which includes as special cases many practical precoder design problems such as multi-cell coordinated linear precoding, full and partial per-cell coordinated multi-point transmission, zero-forcing precoding and joint BS clustering and beamforming/precoding. The SUM problem is difficult due to its non-convexity and the tight coupling of the users' precoders. In this paper we propose a novel convex approximation technique to approximate the original problem by a series of convex subproblems, each of which decomposes across all the cells. The convexity of the subproblems allows for efficient computation, while their decomposability leads to distributed implementation. {Our approach hinges upon the identification of certain key convexity properties of the sum-utility objective, which allows us to transform the problem into a form that can be solved using a popular algorithmic framework called BSUM (Block Successive Upper-Bound Minimization).} Simulation experiments show that the proposed framework is effective for solving interference management problems in large HetNet.Comment: Accepted by IEEE Transactions on Wireless Communicatio

    Joint Downlink Base Station Association and Power Control for Max-Min Fairness: Computation and Complexity

    Get PDF
    In a heterogeneous network (HetNet) with a large number of low power base stations (BSs), proper user-BS association and power control is crucial to achieving desirable system performance. In this paper, we systematically study the joint BS association and power allocation problem for a downlink cellular network under the max-min fairness criterion. First, we show that this problem is NP-hard. Second, we show that the upper bound of the optimal value can be easily computed, and propose a two-stage algorithm to find a high-quality suboptimal solution. Simulation results show that the proposed algorithm is near-optimal in the high-SNR regime. Third, we show that the problem under some additional mild assumptions can be solved to global optima in polynomial time by a semi-distributed algorithm. This result is based on a transformation of the original problem to an assignment problem with gains log(gij)\log(g_{ij}), where {gij}\{g_{ij}\} are the channel gains.Comment: 24 pages, 7 figures, a shorter version submitted to IEEE JSA

    NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization

    Get PDF
    We study a stochastic and distributed algorithm for nonconvex problems whose objective consists of a sum of NN nonconvex Li/NL_i/N-smooth functions, plus a nonsmooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into NN subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner. With a special non-uniform sampling, a version of NESTT achieves ϵ\epsilon-stationary solution using O((i=1NLi/N)2/ϵ)\mathcal{O}((\sum_{i=1}^N\sqrt{L_i/N})^2/\epsilon) gradient evaluations, which can be up to O(N)\mathcal{O}(N) times better than the (proximal) gradient descent methods. It also achieves Q-linear convergence rate for nonconvex 1\ell_1 penalized quadratic problems with polyhedral constraints. Further, we reveal a fundamental connection between primal-dual based methods and a few primal only methods such as IAG/SAG/SAGA.Comment: 35 pages, 2 figure

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear

    Iteration Complexity Analysis of Block Coordinate Descent Methods

    Get PDF
    In this paper, we provide a unified iteration complexity analysis for a family of general block coordinate descent (BCD) methods, covering popular methods such as the block coordinate gradient descent (BCGD) and the block coordinate proximal gradient (BCPG), under various different coordinate update rules. We unify these algorithms under the so-called Block Successive Upper-bound Minimization (BSUM) framework, and show that for a broad class of multi-block nonsmooth convex problems, all algorithms covered by the BSUM framework achieve a global sublinear iteration complexity of O(1/r)O(1/r), where r is the iteration index. Moreover, for the case of block coordinate minimization (BCM) where each block is minimized exactly, we establish the sublinear convergence rate of O(1/r)O(1/r) without per block strong convexity assumption. Further, we show that when there are only two blocks of variables, a special BSUM algorithm with Gauss-Seidel rule can be accelerated to achieve an improved rate of O(1/r2)O(1/r^2)
    corecore